What 1s RPC

Ex:gRPC, thrift...

gRPC Server Ruby Client

C++ Service

Android-Java Client

USTC, CHINA

ADSLAB

=

Datacenter RPCs can be Gener?

Anuj Kalia (CMU)
Michael Kaminsky (Intel Labs) David G. Anders¢

Modern datacenter networks are fast = =

e 100 Gbps

e 2 us RTT under one switch

* 300 ns per switch hop

Existing networking options sacrifice

performance or generality

General Specialized

Fast

Slow

Ex: TCP, gRPC Ex: DPDK, RDMA

* Works in commodity

* Makes simplifying
datacenters

assumptions

* Provides reliability,

* Requires special
congestion control, ...

hardware ‘

Specialization for fast networking = =

RDMA NICs FPGAs Programmable switches
FaRM [NSDI 14, SOSP 15] KV-Direct [SOSP 17] NetChain [NSDI 18]

HERD [SIGCOMM 14] ZabFPGA [NSDI 18]

DrTM [SOSP15, OSDI 18]

LITE [SOSP 17]

Wukong [OSDI 16]

FaSST [OSDI 16]

NAM-DB [VLDB 17]
HyperLoop [SIGCOMM 18]
DSLR [SIGMOD 18]

Drawbacks
* Limited applicability
* Reduced modularity and reuse due to co-design

5

eRPC provides both speed and generality = &

General Specialized

Slow Fast

Three challenges

1. Managing packet loss
* Works in commodity

datacenters 2. Low-overhead transport

3. Easy integration for

* Provides reliability, existing applications

congestion control, ...

~

Challenge #1: Managing packet loss

Problem: Millisecond timeouts for small RPCs

Sender Buffer
S~
T

/

Receiver

Sender

If a client’s unlock packet is dropped:

* Client retransmits after many milliseconds

¢ Many contending requests fail

~

Challenge #1: Managing packet loss

Problem: Millisecond timeouts for small RPCs : :
Hardware solution: Lossless link layer

(e.g., PFC, InfiniBand)
Pros: Simple/cheap reliability
—| Receiver Cons: Deadlocks, unfairness

eRPC's solution

Sender

Sender

If a client’s unlock packet is dropped:

: . e A relaxed requirement for rare loss,
 Client retransmits after many milliseconds

supported by existing networks
* Many contending requests fail

In low-latency networks, switch buffers prevent

most loss

e e Bandwidth = 25 Gbps, RTT = 6.0 ps
“ e Bandwidth x delay (BDP) = 19 KB
25 Gbps_/- '_ 7 '_
N |eeoo- N N - N e Switch buffer = 12 MB >> BDP

100 nodes, 6 switches

Enabled by low-latency NICs

Slow NIC
Adds 10 ps

Fast NIC
Adds 500 ns

All modern switches have buffers == BDP = 2=

e~ R -

Broadcom Trident 3 (32 MB) Mellanox Spectrum 2 (42 MB) Barefoot Tofino (22 MB)

These are not “big buffer” switches!

Cisco 3636-C (16 gigabytes, DRAM buffer)

10

Small BDP + sufficient switch buffer == Rare loss =

Switch buffer (12 MB)

»m » Victim node

Node 1

7

Node 2

B\

Node 100

19 KB

(+ other non-incast flows)

* Incast tolerance = 12 MB / 19 KB = 640
~ 50-way tolerance desired in practice [e.g., DCQCN @Microsoft, Timely @Google]

« Tested with 100-way incast: No loss

11

Challenge 7#2: L.ow-overhead transport layer

ldea: Optimize for the common case

Example 1: Optimized DMA buffer management for rare packet loss

Example 2: Optimized congestion control for uncongested networks

Many more in paper:

¢ Optimized memory allocation for small-size RPCs

* Optimized threading for short-duration RPCs

12

Example: Optimized DMA buffer management

for rare packet loss

Zero Copy Transmission
DMA buffer

l—».—l

H; Data1 Datay | <-+----- Datan |Hz| - - |Hn

13

Example: Optimized DMA buffer management

for rare packet loss

Problem: Detecting completion of request DMA

CPU Request

NIC """ DMA read T """""""""""""""""""""""" T """"""""" "
Method #1: Explicit NIC signal Method #2: Server’s response

e Overhead for each request * Free
* Doesn't work if a packet is lost

Solution: Use server’s response in common case. Flush DMA queue during rare loss.

14

Example: Efficient congestion control in

software

Hardware solution: NIC offload

Pro: Saves CPU cycles

. Con: Low flexibility
Problem: Congestion control overhead Ex: Difficult to use Carousel

[SIGCOMM 17]
Example: Rate limiter overhead

eRPC's solution

Optimize for uncongested networks

15

Datacenter networks are usually uncongested =

Facebook datacenter studies

Timescale Links less than 10% utilized
Ten minutes 99% [Roy et al., SIGCOMM 15]

25 pus 90% [Zhang et al., IMC 17]

10

Congestion control, fast and slow

eRPC uses RTT-based
congestion control

(Timely [SIGCOMM 15])

RTT high: TX_rate--;
RTT low: TX_rate++;

17

Congestion control, fast and slow = =

Client receives ACK & measures RTT

|

eRPC uses RTT-based
congestion control

(Timely [SIGCOMM 15))

Update TX rate

RTT high: TX_rate--;
RTT low: TX_rate++; ‘e,

%}'

. .. No Yes .
Place in rate limiter |« > Place on wire

18

logether, common-case optimizations matter

Unoptimized

+Zero-copy request processing
+Preallocated responses
+Multi-packet RQ

+Rate limiter bypass

+Timely bypass

+Batched RTT timestamps

0 2 4 6 8 10
Millions of requests/second (one core)

Result: Low overhead transport with congestion control

19

e RPC microbenchmark highlights = =

Lossy 40 GbE network

e 2.3 us RPC round-trip latency

* Line rate with one core

* 60 million RPCs/s per machine

 Scalability to 20000 connections (>> RDMA)

Challenge #3: Kasy integration with existing

applications

* 5 years of developer effort. 150+ unit tests, fuzzing.

= willemt / raft

* |n production use by Intel

Remote procedure calls in Raft Complexity during failure
B TRy S B A
Client ———i '
Leader
Follower
Follower

Image credit: James Mickens

21

Replication over eRP(1s last

Client latency (ps)
3-way replication, data in DRAM

eRPC/Lossy Ethernet 5.5us

[Istvan et al., NSDI 16] FPGA 5.5us

[DARE, HPDC 15] RDMA

[NetChain, NSDI 18] P4 switch 9.7us
0 5 10

Raft-over-eRPC does not have network or object size constraints

22

Conclusion

e Datacenter RPCs can be General and Fast
 ¢RPC 1s a fast Remote Procedure Call library
* common-case optimizations

 Guarantee Generality

e It runs over both Ethernet and InfiniBand, and performs
comparably to RDMA.

