FuzzylLog

A Partially-Ordered Shared Log

48

Dec. 17th, 2018

Background: Control Panel Services

» Control panel services (coordinator, schedulers,
filesystem namenodes, ...)

e States are complex (in-memory data structures)

» Typically implemented on a single server

- GFS: “Having a single master vastly simplifies our
design and enables the master to make
sophisticated chunk placement and replication
decisions using global knowledge.” [2]

Background: Problems

» Single-point failure
e Doesn’t scale well
e Distribution of state can be difficult

v**

Background: Existing Solutions

» Real-time backup
- Switch to backup server on failure
- e.g., GFS [2]
- Simple, inherently consistent

— Doesn’t scale well

e Distributed Protocols
- e.g., Paxos, 2PC

- Complex, inefficient, difficult to merge into our own
platform

Background: Shared Log

 Another solution

* A simple layer that maps higher-level
operations to appends/reads on the log

S
replicated
state
sequencer
¥
B

A C D

updates in
shared log

(Conventional) Shared Log

* Imposes a global total order on all nodes (to
maintain consistency)

- Always expensive
- Often impossible

- Typically unnecessary

replicated

\ state
sequencer

00‘0—0

updates in
shared log

Bottleneck

Can we provide the simplicity of a
shared log without imposing a total
order?

d

Introducing FuzzylLog

» A partially-ordered shared log
e ‘Fuzzy’
 Two sources of ‘partial order’

- Sharding
- Geo-replication

v**

Motivation: Sharding

Motivation: Geo-replication

Reads

Reads

L 4

Representation

« DAG partial order
e Color shard
e Chain log of each site

- Replicated on every site
- Each chain totally ordered

e ‘BA" A happens-after B

(a) Single site, single shard (b) Single site, multiple shards

*o¢ ceee’

(c) Multiple sites, single shard (d) Multiple sites, multiple shards
Site A
(TODO) fig-b + fig-c
la— 1b< 2a
Site B
'] .): . b~ la~ 2a

AP

handle = new_instance(colorID, snapshotID)
- Create a new shard on a site
- Based on snapshotID

append(handle, data, nodeColors)
- Append a new entry

sync(handle, callback)
- Client syncs with FuzzylLog

trim(handle, snapshotiD)
- Reduce log size

Why does it work?

(not explicitly answered In the paper)

By nature, It Is shared log, which is already known
to work (despite Its inefficiency)

Casual consistency guarantee (on a single shard)
Serializablility (each chain)

Conclusion: operations to all shards on every site
can be correctly ordered

Implementation

» Dapple
- A FuzzylLog server / platform
- On which new applications can be developed
- Scalable, space efficient, high performance

- https://github.com/JLockerman/FuzzyLog
 Coded in Rust

https://github.com/JLockerman/FuzzyLog

Implementation

* At each site,
- Logs from different sites are stored separately (as a chain)
— Chain replication

- Remote states are retrieved periodically (chainserver itself
acts as a client)

» Multiple color operation
- Skeen’s algorithm
- Formal verification in Coq
- Usually 2 phases; 3 phases when a client crashes

Application: AtomicMap

Goal: atomic consistency
Scenario: single site, multiple shards

How
- Write: Append entries to all chains even if the colors differ
- Read: Append entries only to the corresponding color

Observe

- All shards share a common write history

- Reads always correspond to some linearizability
— Strict serializability!

Database

- Alice

Bob

Database

TX:
Alice
Bob

Alice

Bob

“

$5
$0
Transfer Alice’s
money to Bob
Alice had $5

Bob has $5

Application: CRDTMap

* Goal: causal consistency

* Scenario: multiple sites, single shard

« How: use one color for all operations

« Why
- The operations for one color are causally consistent
- Therefore, all operations are causally consistent

Application: CAPMap

Goal: best-effort consistency
- Strong consistency
— Causal consistency during network partitions

Scenario: multiple sites, single shard

How
- Server appends to primary site; syncs until it sees ‘put’ itself

- When partitioned, appends to local history; after the partition healed, throw
away local state and replay primary logs + local logs

Observe
- Primary guarantees serializability, thus strong consistency

- When the partition heals, primary syncs and replays all logs'since last sync, (all
nodes converge to the same state eventually), thus causal consistency

Application: RedBlueMap

 Goal: RedBlue consistency
* Scenario: multiple sites, single shard

e How
- Single color
- Red ops routed to the primary site
- Blue ops performed on the secondary site
« Why
- Red ops are totally ordered against each other
- Blue ops commute with each other
- This indeed is RedBlue consistent

Evaluation: Latency

75 F Sinsle-Color Appends 1 replica =
ingle-Color Appen 2 replicas NS

30T I | I 3 replicas N
25 ¢ 7
0

75 Two-Color Appends 7
g s0f 7
o — 25 . .
i bk &
(=9
o I | I | | I |
B 751 Two-Color Recovery 7
<5
507r 7
25T 7
0 ! ! l ¥ il ! !

0 200 400 600 800 1000 1200 1400
Latency (microsecs)

Figure 6: Dapple executes single-color appends in one ¥
phase; multi-color appends in two phases; and recovers
from crashed clients in three phases.

Evaluation: Scalability

I I I
| Dapple 0% —+— Dapple 100% —&—
10 Dpr|Eﬂ.|5’b% Emulated Tango
% Dapple 1%
Dapple 10%

Millions of Appends/s
o~
I

Num Chients

Figure 7: Dapple scales with workload parallelism, but
a centralized sequencer bottlenecks emulated Tango.

Shared log systems scale with #clients badly
Fuzzyl og systems scale well when multi-shard ‘put’s are rare

Evaluation: Scalability

.
of AtomicMap / Dapple servers=1/8§ —
6 I 2/ T 4
4 /8
L SF Q /8 N _
o 16/ 16 W—
Z o4t 32/ 16 .
=
o
3 3 -
=
5k 4
|k Fuzzyl og systems scale well with
#servers
0 = T
O G,;% !g,;_;; ffjgé fmﬁi_

Workload (% of multi-shard puts)
Figure 8: AtomicMap scales throughput while suppori-
ing multi-shard transactions. Each bar labelled N / K
shows throughput with N AtomicMap servers running
against a K-server Dapple deployment.

Evaluation: Weaker Consistency

1.5 4
Staleness (right y-axis) ——
CRDTMap puts/sec (left y-axis) =

13

Throughput (Ms of puts/sec)

]
b
Staleness (Ms of missing puts)

Time Elapsed (secs)
Figure 9: CRDTMap provides a trade-off between
throughput and staleness.

Evaluation: Partition Tolerance

| T

100 |
10 primary puts -

1§]
0.1

ra—

100 é:a,4.4,.h+.+,+..+.+..+.+..q.4..4,u.hp
10 £ secondary puts
L
0.1¢C

100
10

1
0.1

Latency (ms)

primary gets

100 r R
10 |) secondary gets

1 ; . :: 'u. gl
[ll I I | | |
0 2000 4000 o000 8000 10000 12000 14000
Time Elapsed (ms)

Figure 10: CAPMap switches between linearizability
and causal+ consistency during network partitions.

Conclusion

Simple and intuitive
Powerful and flexible
Performant

Easy to build applications atop

- All of these applications only require several hundreds
of lines of code!

Different levels of consistency guarantees
Handle network partitions gracefully

References

1.The FuzzyLog: A Partially Ordered Shared Log
(referenced throughout the slides)

2.The Google file system

ﬂ

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28

