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Background: Control Panel Services

» Control panel services (coordinator, schedulers,
filesystem namenodes, ...)

e States are complex (in-memory data structures)

» Typically implemented on a single server

- GFS: “Having a single master vastly simplifies our
design and enables the master to make
sophisticated chunk placement and replication
decisions using global knowledge.” [2]



Background: Problems

» Single-point failure
e Doesn’t scale well
e Distribution of state can be difficult
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Background: Existing Solutions

» Real-time backup
- Switch to backup server on failure
- e.g., GFS [2]
- Simple, inherently consistent

— Doesn’t scale well

e Distributed Protocols
- e.g., Paxos, 2PC

- Complex, inefficient, difficult to merge into our own
platform



Background: Shared Log

 Another solution

* A simple layer that maps higher-level
operations to appends/reads on the log
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(Conventional) Shared Log

* Imposes a global total order on all nodes (to
maintain consistency)

- Always expensive
- Often impossible

- Typically unnecessary
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Can we provide the simplicity of a
shared log without imposing a total
order?
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Introducing FuzzylLog

» A partially-ordered shared log
e ‘Fuzzy’
 Two sources of ‘partial order’

- Sharding
- Geo-replication
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Motivation: Sharding




Motivation: Geo-replication
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Representation

« DAG partial order
e Color shard
e Chain log of each site

- Replicated on every site
- Each chain totally ordered

e ‘BA" A happens-after B




(a) Single site, single shard (b) Single site, multiple shards
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AP

handle = new_instance(colorID, snapshotID)
- Create a new shard on a site
- Based on snapshotID

append(handle, data, nodeColors)
- Append a new entry

sync(handle, callback)
- Client syncs with FuzzylLog

trim(handle, snapshotiD)
- Reduce log size




Why does it work?

(not explicitly answered In the paper)

By nature, It Is shared log, which is already known
to work (despite Its inefficiency)

Casual consistency guarantee (on a single shard)
Serializablility (each chain)

Conclusion: operations to all shards on every site
can be correctly ordered



Implementation

» Dapple
- A FuzzylLog server / platform
- On which new applications can be developed
- Scalable, space efficient, high performance

- https://github.com/JLockerman/FuzzyLog
 Coded in Rust



https://github.com/JLockerman/FuzzyLog

Implementation

* At each site,
- Logs from different sites are stored separately (as a chain)
— Chain replication

- Remote states are retrieved periodically (chainserver itself
acts as a client)

» Multiple color operation
- Skeen’s algorithm
- Formal verification in Coq
- Usually 2 phases; 3 phases when a client crashes



Application: AtomicMap

Goal: atomic consistency
Scenario: single site, multiple shards

How
- Write: Append entries to all chains even if the colors differ
- Read: Append entries only to the corresponding color

Observe

- All shards share a common write history

- Reads always correspond to some linearizability
— Strict serializability!
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Application: CRDTMap

* Goal: causal consistency

* Scenario: multiple sites, single shard

« How: use one color for all operations

« Why
- The operations for one color are causally consistent
- Therefore, all operations are causally consistent



Application: CAPMap

Goal: best-effort consistency
- Strong consistency
— Causal consistency during network partitions

Scenario: multiple sites, single shard

How
- Server appends to primary site; syncs until it sees ‘put’ itself

- When partitioned, appends to local history; after the partition healed, throw
away local state and replay primary logs + local logs

Observe
- Primary guarantees serializability, thus strong consistency

- When the partition heals, primary syncs and replays all logs'since last sync, (all
nodes converge to the same state eventually), thus causal consistency



Application: RedBlueMap

 Goal: RedBlue consistency
* Scenario: multiple sites, single shard

e How
- Single color
- Red ops routed to the primary site
- Blue ops performed on the secondary site
« Why
- Red ops are totally ordered against each other
- Blue ops commute with each other
- This indeed is RedBlue consistent



Evaluation: Latency
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Figure 6: Dapple executes single-color appends in one ¥
phase; multi-color appends in two phases; and recovers
from crashed clients in three phases.




Evaluation: Scalability
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Figure 7: Dapple scales with workload parallelism, but
a centralized sequencer bottlenecks emulated Tango.

Shared log systems scale with #clients badly
Fuzzyl og systems scale well when multi-shard ‘put’s are rare



Evaluation: Scalability
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Evaluation: Weaker Consistency
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Figure 9: CRDTMap provides a trade-off between
throughput and staleness.



Evaluation: Partition Tolerance
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Figure 10: CAPMap switches between linearizability
and causal+ consistency during network partitions.



Conclusion

Simple and intuitive
Powerful and flexible
Performant

Easy to build applications atop

- All of these applications only require several hundreds
of lines of code!

Different levels of consistency guarantees
Handle network partitions gracefully
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