

FuzzyLog

A Partially-Ordered Shared Log

Dec. 17th, 2018

Background: Control Panel Services

● Control panel services (coordinator, schedulers,
filesystem namenodes, …)

● States are complex (in-memory data structures)
● Typically implemented on a single server

– GFS: “Having a single master vastly simplifies our
design and enables the master to make
sophisticated chunk placement and replication
decisions using global knowledge.” [2]

Background: Problems

● Single-point failure
● Doesn’t scale well
● Distribution of state can be difficult

Background: Existing Solutions

● Real-time backup
– Switch to backup server on failure

– e.g., GFS [2]

– Simple, inherently consistent

– Doesn’t scale well

● Distributed Protocols
– e.g., Paxos, 2PC

– Complex, inefficient, difficult to merge into our own
platform

1 2

345

6

Server Backup

● Another solution
● A simple layer that maps higher-level

operations to appends/reads on the log

Background: Shared Log

Site A

Site B

(Conventional) Shared Log

● Imposes a global total order on all nodes (to
maintain consistency)
– Always expensive

– Often impossible

– Typically unnecessary

Bottleneck

Can we provide the simplicity of a
shared log without imposing a total

order?

Introducing FuzzyLog

● A partially-ordered shared log
● ‘Fuzzy’
● Two sources of ‘partial order’

– Sharding

– Geo-replication

Motivation: Sharding

Site A

…...

Can be unordered

Motivation: Geo-replication

Site A Site B

Reads Reads

User 1 User 2

We don’t need to talk

Representation

● DAG partial order
● Color shard
● Chain log of each site

– Replicated on every site

– Each chain totally ordered

● “B←A” A happens-after B

(a) Single site, single shard (b) Single site, multiple shards

(c) Multiple sites, single shard (d) Multiple sites, multiple shards

Site A

Site B

1a

1b

1a

1b

2a

2a

1b← 1a← 2a

1a← 1b← 2a

(TODO) fig-b + fig-c

(Causality maintained when append in this manner)

API

● handle = new_instance(colorID, snapshotID)
– Create a new shard on a site

– Based on snapshotID

● append(handle, data, nodeColors)
– Append a new entry

● sync(handle, callback)
– Client syncs with FuzzyLog

● trim(handle, snapshotID)
– Reduce log size

Why does it work?

● (not explicitly answered in the paper)
● By nature, it is shared log, which is already known

to work (despite its inefficiency)
● Casual consistency guarantee (on a single shard)
● Serializability (each chain)

● Conclusion: operations to all shards on every site
can be correctly ordered

Implementation

● Dapple
– A FuzzyLog server / platform

– On which new applications can be developed

– Scalable, space efficient, high performance

– https://github.com/JLockerman/FuzzyLog
● Coded in Rust

https://github.com/JLockerman/FuzzyLog

Implementation

● At each site,
– Logs from different sites are stored separately (as a chain)

– Chain replication

– Remote states are retrieved periodically (chainserver itself
acts as a client)

● Multiple color operation
– Skeen’s algorithm

– Formal verification in Coq

– Usually 2 phases; 3 phases when a client crashes

Application: AtomicMap

● Goal: atomic consistency
● Scenario: single site, multiple shards
● How

– Write: Append entries to all chains even if the colors differ

– Read: Append entries only to the corresponding color

● Observe
– All shards share a common write history
– Reads always correspond to some linearizability

– Strict serializability!

Application: CRDTMap

● Goal: causal consistency
● Scenario: multiple sites, single shard
● How: use one color for all operations
● Why

– The operations for one color are causally consistent

– Therefore, all operations are causally consistent

Application: CAPMap

● Goal: best-effort consistency
– Strong consistency

– Causal consistency during network partitions

● Scenario: multiple sites, single shard
● How

– Server appends to primary site; syncs until it sees ‘put’ itself

– When partitioned, appends to local history; after the partition healed, throw
away local state and replay primary logs + local logs

● Observe
– Primary guarantees serializability, thus strong consistency

– When the partition heals, primary syncs and replays all logs since last sync, (all
nodes converge to the same state eventually), thus causal consistency

Application: RedBlueMap

● Goal: RedBlue consistency
● Scenario: multiple sites, single shard
● How

– Single color

– Red ops routed to the primary site

– Blue ops performed on the secondary site

● Why
– Red ops are totally ordered against each other

– Blue ops commute with each other

– This indeed is RedBlue consistent

Evaluation: Latency

Evaluation: Scalability

Shared log systems scale with #clients badly
FuzzyLog systems scale well when multi-shard ‘put’s are rare

Evaluation: Scalability

FuzzyLog systems scale well with
#servers

Evaluation: Weaker Consistency

Evaluation: Partition Tolerance

Conclusion

● Simple and intuitive
● Powerful and flexible
● Performant
● Easy to build applications atop

– All of these applications only require several hundreds
of lines of code!

● Different levels of consistency guarantees
● Handle network partitions gracefully

References

1.The FuzzyLog: A Partially Ordered Shared Log
(referenced throughout the slides)

2.The Google file system

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28

