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Background: Control Panel Services

● Control panel services (coordinator, schedulers, 
filesystem namenodes, …)

● States are complex (in-memory data structures)
● Typically implemented on a single server

– GFS: “Having a single master vastly simplifies our 
design and enables the master to make 
sophisticated chunk placement and replication 
decisions using global knowledge.” [2]



  

Background: Problems

● Single-point failure
● Doesn’t scale well
● Distribution of state can be difficult



  

Background: Existing Solutions

● Real-time backup
– Switch to backup server on failure

– e.g., GFS [2]

– Simple, inherently consistent

– Doesn’t scale well

● Distributed Protocols
– e.g., Paxos, 2PC

– Complex, inefficient, difficult to merge into our own 
platform
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● Another solution
● A simple layer that maps higher-level 

operations to appends/reads on the log

Background: Shared Log

Site A

Site B



  

(Conventional) Shared Log

● Imposes a global total order on all nodes (to 
maintain consistency)
– Always expensive

– Often impossible

– Typically unnecessary

Bottleneck



  

Can we provide the simplicity of a 
shared log without imposing a total 

order?



  

Introducing FuzzyLog

● A partially-ordered shared log
● ‘Fuzzy’
● Two sources of ‘partial order’

– Sharding

– Geo-replication



  

Motivation: Sharding

Site A

…...

Can be unordered



  

Motivation: Geo-replication

Site A Site B

Reads Reads

User 1 User 2

We don’t need to talk



  

Representation

● DAG partial order
● Color shard
● Chain log of each site

– Replicated on every site

– Each chain totally ordered

● “B←A” A happens-after B



  

(a) Single site, single shard (b) Single site, multiple shards

(c) Multiple sites, single shard (d) Multiple sites, multiple shards

Site A

Site B

1a

1b

1a

1b

2a

2a

1b← 1a← 2a

1a← 1b← 2a

(TODO) fig-b + fig-c

(Causality maintained when append in this manner)



  

API

● handle = new_instance(colorID, snapshotID)
– Create a new shard on a site

– Based on snapshotID

● append(handle, data, nodeColors)
– Append a new entry

● sync(handle, callback)
– Client syncs with FuzzyLog

● trim(handle, snapshotID)
– Reduce log size



  

Why does it work?

● (not explicitly answered in the paper)
● By nature, it is shared log, which is already known 

to work (despite its inefficiency)
● Casual consistency guarantee (on a single shard)
● Serializability (each chain)

● Conclusion: operations to all shards on every site 
can be correctly ordered



  

Implementation

● Dapple
– A FuzzyLog server / platform

– On which new applications can be developed

– Scalable, space efficient, high performance

– https://github.com/JLockerman/FuzzyLog
● Coded in Rust

https://github.com/JLockerman/FuzzyLog


  

Implementation

● At each site,
– Logs from different sites are stored separately (as a chain)

– Chain replication 

– Remote states are retrieved periodically (chainserver itself 
acts as a client)

● Multiple color operation
– Skeen’s algorithm

– Formal verification in Coq

– Usually 2 phases; 3 phases when a client crashes



  

Application: AtomicMap

● Goal: atomic consistency
● Scenario: single site, multiple shards
● How

– Write: Append entries to all chains even if the colors differ

– Read: Append entries only to the corresponding color

● Observe
– All shards share a common write history
– Reads always correspond to some linearizability

– Strict serializability!



  



  

Application: CRDTMap

● Goal: causal consistency
● Scenario: multiple sites, single shard
● How: use one color for all operations
● Why

– The operations for one color are causally consistent

– Therefore, all operations are causally consistent



  

Application: CAPMap

● Goal: best-effort consistency
– Strong consistency

– Causal consistency during network partitions

● Scenario: multiple sites, single shard
● How

– Server appends to primary site; syncs until it sees ‘put’ itself

– When partitioned, appends to local history; after the partition healed, throw 
away local state and replay primary logs + local logs

● Observe
– Primary guarantees serializability, thus strong consistency

– When the partition heals, primary syncs and replays all logs since last sync, (all 
nodes converge to the same state eventually), thus causal consistency



  

Application: RedBlueMap

● Goal: RedBlue consistency
● Scenario: multiple sites, single shard
● How

– Single color

– Red ops routed to the primary site

– Blue ops performed on the secondary site

● Why
– Red ops are totally ordered against each other

– Blue ops commute with each other

– This indeed is RedBlue consistent



  

Evaluation: Latency



  

Evaluation: Scalability

Shared log systems scale with #clients badly
FuzzyLog systems scale well when multi-shard ‘put’s are rare



  

Evaluation: Scalability

FuzzyLog systems scale well with 
#servers



  

Evaluation: Weaker Consistency



  

Evaluation: Partition Tolerance



  

Conclusion

● Simple and intuitive
● Powerful and flexible
● Performant
● Easy to build applications atop

– All of these applications only require several hundreds 
of lines of code!

● Different levels of consistency guarantees
● Handle network partitions gracefully
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