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Large-Scale Deep Learning for Intelligent Computer Systems, Google Research
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GPU Cluster Manager
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• Design Objectives


• Minimize Cluster-Wide 
Average Job Completion 
Time (JCT)

• Achieve


• High Resource (GPU) 
Utilization
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Challenge 1: 
Unpredictable Training Time

• Unknown execution time of DL training jobs  
• Job execution time is useful when minimizing JCT 

• Predict job execution time 
• Use the smooth loss curve of DL training jobs (Optimus [1])

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18 
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Challenge 2: 
Over-Aggressive Job Consolidation
• Network overhead in DDL training


• Consolidated placement for good training performance


• Fragmented free GPUs in the cluster


• Longer queuing delay
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Prior Solutions

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18  
[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’18
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Tiresias: 
A GPU cluster manager for Distributed Deep Learning 

Without Complete Knowledge

• Place jobs without 
additional information 
from users

• Age-Based Scheduler

• Model Profile-Based 
Placement

• Minimize JCT without 
complete knowledge 
of jobs
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Observation 1
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Observation 1

Scheduler should consider  
both temporal and spatial aspects  

of DL training jobs
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Observation 1

• Spatial: number of GPUs


• Temporal: executed time


• distribution of job execution time(maybe)
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Tiresias: Scheduler
• Least-Attained Service[1] (LAS)


• Prioritize job that has the shortest executed time


• Gittins Index policy[2]


• Need the distribution of job execution time


• Prioritize job that has the highest probability to complete 
in the near future

[1]. Feedback queueing models for time-shared systems. JACM, 1968  
[2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

Short Job First(SJF)

Short Remaining-Time First(SRTF)
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Tiresias: Scheduler
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1
age
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Gittins Index

• P is the probability that J can complete with in Δ


• E is the expected service (cost) of J to be complete with in Δ 


• Δ is the next service quantum


• P and E are calculated from the distribution of job GPU time
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Gittins Index
• Higher probability to complete (Gittins Index), higher 

priority
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Gittins Index
• Higher probability to complete (Gittins Index), higher 

priority

• Δ=4 
• distribution=(4,8,12)

Gj1 =
Ps=4

min(4 − 0,δ) * 1/3 + min(8 − 0,δ) * 1/3 + min(12 − 0,δ) * 1/3
=

1/3
1/3 * 4

= 0.25
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Two-Dimensional Age-Based Scheduler 
(2DAS)

• Age calculated by two-dimensional attained service


• i.e., a job’s total executed GPU time (# of GPUs × executed 
time)


• No prior information 


• 2D-LAS


• With partial information: distribution of job GPU time 


• 2D-Gittins Index
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Fewer job switches: 
Priority discretization: Discretized-2DAS

Two-Dimensional Age-Based Scheduler 
(2DAS)
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Prior Solutions

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys’18  
[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI’18
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Observation 2

4 concurrent 8-worker 
jobs with different 
placement schemes. 

Tensor size in DL models


• Large tensors cause network 
imbalance and contention
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Observation 2
• Tensor size in DL models


• Large tensors cause network imbalance and contention

Consolidated placement: when the model 
is highly skewed in its tensor size 
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Observation 2
• Tensor size in DL models


• Large tensors cause network imbalance and contention

Consolidated placement: when the model 
is highly skewed in its tensor size 
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Tiresias

https://github.com/SymbioticLab/Tiresias



�42

Evaluation - Setup
• Testbed Experiment(Michigan ConFlux cluster)


• 100 Gbps EDR Mellanox IB + RDMA protocol


• 15*(4-NVIDIA Tesla P100s with NVlink + 256GB DDR4)


• GPFS(1.2GB/s)


• Large-scale Trace-driven(from Microsoft) Simulation


• Information: job arrival, completion, demotion, propotion, preemption, 
#GPU, training time


• #queues: k=2


• threshold=Δ=1
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Evaluation - Workload
• 480 jobs


• 240 * 1-GPU jobs


• 40 * 2-GPU jobs


• 80 * 4-GPU jobs


• 90 * 8-GPU jobs


• 25 * 16-GPU jobs


• 5 * 32-GPU jobs

  
Small: <4GPUs Short: <=800s
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JCT Improvements 
inTestbed Experiment

• Avg. JCT improvement (w.r.t.YARN-CS): 5.5×


• Comparable performance to SRTF
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JCT in Testbed Experiment
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Queuing Delay inTestbed 
Experiment
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Time overhead of Job switch
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GPU Utilization in Testbed 
Experiment

• The makespan is improved by 1.21× (w.r.t.YARN-CS)
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Training Performance in 
Testbed Experiment

• Training time whenTiresias-L running with and without placement

TiresiasLrandom

TiresiasLconsolidation

Tiresias-L_random

Tiresias-L_placement



�50

JCT Improvements in Trace-
Driven Simulation

• 10-week job trace from Microsoft • 2,000-GPU cluster


• Avg. JCT improvement (w.r.t. Gandiva): 2×
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Sensitivity Analysis of 2D-
LAS

Fig14a Fig14b Fig14c

Fig15a Fig15b Fig15c
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