Tiresias: A GPU Cluster Manager for Distributed Deep Learning

NSDI'19

Guanbin Xu 2019-03-27, Reading Group

•

Tiresias

A GPU Cluster Manager

for **Distributed Deep Learning**

NSDI'19

Outline

1. Deep Learning

2. GPU Cluster Manager & Weakness of them

3. Tiresias:

1.Scheduler

2. Placement

4. Tiresias: Evaluation

Growing Use of Deep Learning at Google

Number of directories containing model description files

Ż А

Large-Scale Deep Learning for Intelligent Computer Systems, Google Research

f (w, x)

SIMD

Outline

1. Deep Learning

2. GPU Cluster Manager & Weakness of them

- 3. Tiresias:
 - 1.Scheduler
 - 2. Placement
- 4. Tiresias: Evaluation

GPU Cluster Manager

Design Objectives

 Minimize Cluster-Wide Average Job Completion Time (JCT)

• Achieve

 High Resource (GPU) Utilization

GPU Cluster

Challenge 1: Unpredictable Training Time

Unknown execution time of DL training jobs

- Job execution time is useful when minimizing JCT
- Predict job execution time
 - Use the smooth loss curve of DL training jobs (Optimus [1])

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys'18

Challenge 2: Over-Aggressive Job Consolidation

- Network overhead in DDL training
 - Consolidated placement for good training performance
 - Fragmented free GPUs in the cluster
 - Longer queuing delay

Prior Solutions

	I. Unpredictable Training Time (<mark>Scheduling</mark>)	II. Over-Aggressive Job Consolidation (Job Placement)	
Optimus [1]	None	None	
YARN-CS	FIFO	None	
Gandiva _[2]	Time-sharing	Trial-and-error	

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys'18[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI'18

Outline

- 1. Deep Learning
- 2. GPU Cluster Manager & Weakness of them
- 3. Tiresias:
 - **1.Scheduler**
 - 2. Placement
- 4. Tiresias: Evaluation

Tiresias:

A GPU cluster manager for Distributed Deep Learning Without Complete Knowledge

Age-Based Scheduler

 Minimize JCT without complete knowledge of jobs

 Model Profile-Based Placement

 Place jobs without additional information from users

Variations in both temporal and spatial aspects

Variations in both temporal and spatial aspects

128-

Scheduler should consider both temporal and spatial aspects of DL training jobs

- Spatial: number of GPUs
- Temporal: executed time
- distribution of job execution time(maybe)

Tiresias: Scheduler

Short Remaining-Time First(SRTF)

- Least-Attained Service^[1] (LAS) Short Job First(SJF)
 - Prioritize job that has the shortest executed time
- Gittins Index policy^[2]
 - Need the distribution of job execution time
 - Prioritize job that has the highest probability to complete in the near future

- [1]. Feedback queueing models for time-shared systems. JACM, 1968
- [2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

Tiresias: Scheduler

- Least-Attained Service^[1] (LAS)
 - Prioritize job that has the shortest executed time
- Gittins Index policy^[2]
 - Need the distribution of job execution time
 - Prioritize job that has the highest probability to complete in the near future

- [1]. Feedback queueing models for time-shared systems. JACM, 1968
- [2]. Multi-armed bandit allocation indices. Wiley, Chichester, 1989

$$GI_{J} = \sup_{\Delta > 0} \frac{P(S - a_{J} \le \Delta | S > a_{J})}{E[\min\{S - a_{J}, \Delta\} | S > a_{J}]}$$

- P is the probability that J can complete with in Δ
- **E** is the expected service (cost) of **J** to be complete with in Δ
- $\boldsymbol{\Delta}$ is the next service quantum
- **P** and **E** are calculated from the distribution of job GPU time

	# of GPUs	Execution time		# of GPUs	Distribution
J_{1}	2	2	$J_{\rm f}$	2	2
J ₂	I	8	J ₂	Ι	(4, 8, 12)
J ₃	2	6	Ja	2	6

Higher probability to complete (Gittins Index), higher priority

	# of GPUs	Distribution	Attained Service	Gittins Index
\mathbf{J}_{1}	2	2	0	0.25
J ₂	I	(4, 8, 12)	0	0.25
J_3	2	6	0	0.25

$$GI_{J} = \sup_{\Delta > 0} \frac{P(S - a_{J} \le \Delta | S > a_{J})}{E[\min\{S - a_{J}, \Delta\} | S > a_{J}]}$$

Δ=4

 $G_{j_1} = \frac{P_{s=4}}{\min(4-0,\delta)*1/3 + \min(8-0,\delta)*1/3 + \min(12-0,\delta)*1/3} = \frac{1/3}{1/3*4} = 0.25$

	# of GPUs	Distribution	Attained Service	Gittins Index
J	2	2	4	0.2
J ₂	I	(4, 8, 12)	0	0.25
J3	2	6	0	0.25

	# of GPUs	Distribution	Attained Service	Gittins Index
Ji	2	2	4	0.2
J ₂	I	(4, 8, 12)	4	0.2
J3	2	6	0	0.25

	# of GPUs	Distribution	Attained Service	Gittins Index
J_{1}	2	2	4	0.2
J ₂	I	(4, 8, 12)	4	0.2
J3	2	6	4	0.2

	# of GPUs	Distribution	Attained Service	Gittins Index
$\mathbf{J}_{\mathbf{i}}$	2	2	4	0.2
J2	I	(4, 8, 12)	8	0.125
J ₃	2	6	4	0.2

	# of GPUs	Distribution	Attained Service	Gittins Index
J	2	2	4	0.2
J ₂	I	(4, 8, 12)	8	0.125
J3	2	6	12	N/A

$$GI_{J} = \sup_{\Delta > 0} \frac{P(S - a_{J} \le \Delta | S > a_{J})}{E[\min\{S - a_{J}, \Delta\} | S > a_{J}]}$$

Two-Dimensional Age-Based Scheduler (2DAS)

- Age calculated by two-dimensional attained service
 - i.e., a job's total executed GPU time (# of GPUs × executed time)
- No prior information
 - 2D-LAS
- With partial information: distribution of job GPU time
 - 2D-Gittins Index

Two-Dimensional Age-Based Scheduler (2DAS)

- Age calculated by two-dimensional attained service
 - i.e., a job's total executed GPU time (# of GPUs × executed time)

Fewer job switches: Priority discretization: Discretized-2DAS

- 2D-LAS
- With partial information: distribution of job GPU time
 - 2D-Gittins Index

Prior Solutions

	I. Unpredictable Training Time (Scheduling)		I. Unpredictable Training Time (<mark>Scheduling</mark>)		II. Over-Aggressive Job Consolidation (Job Placement)
Optimus _[1]	None		None		None
YARN-CS	FIFO		None		
Gandiva _[2]	Time-sharing		Trial-and-error		
Tiresias	LAS	Gittins Index	?		

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters, EuroSys'18[2]. Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI'18

Outline

- 1. Deep Learning
- 2. GPU Cluster Manager & Weakness of them
- 3. Tiresias:
 - 1.Scheduler

2. Placement

4. Tiresias: Evaluation

4 concurrent 8-worker jobs with different placement schemes.

600 500 400 Size (MB) 300 200 100 0 VGGIP VGG19 Restlect52 Resfletto Pestveriol VGGI Alexiver Inception3 Googletter InceptionA

Tensor size in DL models

• Large tensors cause network imbalance and contention

- Tensor size in DL models
 - Large tensors cause network imbalance and contention

Consolidated placement: when the model is highly skewed in its tensor size

• Tensor size in DL models

Outline

- 1. Deep Learning
- 2. GPU Cluster Manager & Weakness of them
- 3. Tiresias:
 - 1.Scheduler
 - 2. Placement
- 4. Tiresias: Evaluation

Tiresias

https://github.com/SymbioticLab/Tiresias

Evaluation - Setup

- Testbed Experiment(Michigan ConFlux cluster)
 - 100 Gbps EDR Mellanox IB + RDMA protocol
 - 15*(4-NVIDIA Tesla P100s with NVlink + 256GB DDR4)
 - GPFS(1.2GB/s)
- Large-scale Trace-driven(from Microsoft) Simulation
 - Information: job arrival, completion, demotion, propotion, preemption, #GPU, training time
- #queues: k=2
- threshold= $\Delta = 1$

Evaluation - Workload

- 480 jobs
 - 240 * 1-GPU jobs
 - 40 * 2-GPU jobs
 - 80 * 4-GPU jobs
 - 90 * 8-GPU jobs
 - 25 * 16-GPU jobs
 - 5 * 32-GPU jobs

JCT Improvements inTestbed Experiment

• Avg. JCT improvement (w.r.t.YARN-CS): 5.5×

• Comparable performance to SRTF

JCT in Testbed Experiment

Bins	l (Small-Short)	2(Small-Long)	3(Large-Short)	4(Large-Long)
% of Jobs	63.5%	12.5%	16.5%	7.5%

Queuing Delay inTestbed Experiment

	Average	Median	95th
YARN-CS	8146s	7464s	l 5327s
SRTF	593s	32s	3133s
Tiresias-G	1005s	39s	7933s
Tiresias-L	963s	l 3s	7755s

Time overhead of Job switch

Total size (MB)

Largest tensor (MB)

Model

VGG19

VGG16

VGGTT

GPU Utilization in Testbed

The makespan is improved by 1.21× (w.r.t.YARN-CS)

Training Performance in Testbed Experiment

• Training time when Tiresias-L running with and without placement

JCT Improvements in Trace-Driven <u>Simulation</u>

Sensitivity Analysis of 2D-LAS

Fig14a

Fig14c

4

2

Tiresias: A GPU Cluster Manager for Distributed Deep Learning

NSDI'19

Q&A

•

Backup

• N/A