
I4: Incremental Inference of 
Inductive Invariants for 

Verification of Distributed 
Protocols

Presenter: Kai Ma <ksqsf@mail.ustc.edu.cn>
Dec. 4th, 2019

mailto:ksqsf@mail.ustc.edu.cn


To verify is human;
To prove, divine.



Agenda

• Background
• Challenge: write a correct distributed system
• Challenge: prove a distributed protocol is correct
• What does invariant mean?
• What does inductive mean? 

• Introduction to I4
• Motivation: incremental
• Methodology: inference
• Effectiveness



Distributed Systems, in a Nutshell

Client

“The Fourth Wall”
Servers / Clusters / Data Centers / …



Distributed Protocols

Lingua Franca

Lingua Franca

Lingua Franca



Mutual Exclusion

• At any time, there should be less than one computer using the 
printer…



Dijkstra’s Algorithm

• Wow, impressive
• Is it correct?



What should we do?

• More testing
• increases our confidence in the software deployed, but we will never know if 

there are more bugs to discover…
• Prove our system has no bugs!
• What do you mean by “no bugs”?
• Aaaaand, what do you mean by “prove”?

• Insight: a server is driven by messages



“Core”

I, Noraneko, 
want cookies!



“Core”

Baker, wake up!

Noraneko
wants cookies!



Modeling the whole system

• The state space of the whole system = Cartesian product of all its 
components
• State Machines
• Initial states

• One of !"", !"$, !"%, …
• State transitions

• Functions ': ) → )
• Desirable properties
• Safety: a system never does what it isn’t supposed to do
• Correctness: a system does what it is supposed to do
• Liveness: a system always makes progress



Invariants

• Some properties are desired
• A digital telephone line should never be hijacked
• A bomb should never explode when it’s not okay

• If, for every reachable state !, "(!) holds, then " is called an invariant
• Write down what you want as invariants
• Prove them
• If you can’t, then your protocol/algorithm/… is likely to be wrong!



How to prove?

• Note that a system can often have 
• infinitely many states, 
• infinitely many transitions, 
• and infinitely many (wrong) behaviors and outcomes

• Let’s try to make the properties “transitive”
• If the property ! holds for initial states
• For all transitions " → $, if we can prove !($) when !(") holds
• Then property P holds for all states

• Such invariants are “inductive”



Induction
• Peano axioms, fifth
• If
• P(0)
• if P(i) then P(i+1)

• Then
• For all natural number n, 

P(n) holds

• Structural induction
• If
• P(s0) for all initial states s0
• if P(s) then P(t) when s->t

• Then
• For all reachable state s, 

P(s) holds





Model Checking

• Given a specification, check if the properties are satisfied
• Approach 1: Brute force
• Enumerate all possible states and verify invariants on them one by one
• E.g.: TLC

• Approach 2: SAT-based
• Turn to logic calculi for help
• E.g.: IC3, Ivy



Facts about Model Checking

• There are infinitely many servers, clients, states, variables, values…
• Given a finite model, we can enumerate all possible states
• The size of the state space exponentially grows with the size of the model
• Only tractable for finite and small models
• Yes, we cannot handle infinity

• Given inductive invariants, SAT-based provers cannot handle 
quantifiers nicely
• Domains are usually infinite
• More often than not, these fragments of logic are undecidable



Observation

• Observe the inductive invariants of finite and small models
• The size grows, but not the complexity
• High regularity

• Fact: we can find inductive invariant by a small instance



Insight

Find an inductive 
invariant for a 

small case
Generalize Check



Automate
Find

(spec -> 
model -> 
ind. Inv.)

Generalize
(finite -> 
infinite)

Check
(inf. Ind. 

Inv. & spec)
ad

jus
t



Some Problems

• How big should the small case be?
• Unanswered, but the intuition is there

• Even small cases are intractable!
• Add axioms to guide the checker (concretization)

• What if the checker fails to prove the inductive invariant?
• Included instance-specific clauses -> prune them
• Model too small so the generalized invariant is not inductive -> increase size



Methodology



Demonstration



Demonstration



Conclusion

• Regularity matters
• By combining existing technology, we can achieve a high level of 

automation in verification of distributed protocols


