14: Incremental Inference of
Inductive Invariants for
Verification of Distributed
Protocols

Presenter: Kai Ma <ksqgsf@mail.ustc.edu.cn>
Dec. 4th 2019

mailto:ksqsf@mail.ustc.edu.cn

To verify is human;
To prove, divine.

Agenda

* Background
* Challenge: write a correct distributed system
e Challenge: prove a distributed protocol is correct
* What does invariant mean?
* What does inductive mean?

* Introduction to 14
* Motivation: incremental
* Methodology: inference
» Effectiveness

Distributed Systems, in a Nutshell

: | m

Servers / Clusters / Data Centers / ...

“The Fourth Wall”

Distributed Protocols

Mutual Exclusion

* At any time, there should be less than one computer using the
printer...

Vi,j € P, (c[t] = True A c|j] = True) = i =

public void run() {
.o) . spin:
Dijkstra’s Algorithm while (true) {
spinning|id| = true;
spinning = spinning;
while (candidate =+ id) {
ready[id] = false;

* Wow, impressive ready = ready:
. if (!spinning|candidate]) {
e |s it correct? candidate = id;
}
}

ready[id| = true;
ready = ready;
for (int i = @; i < ready.length; i+) {
if (1 # id &R ready[i]) {
continue spin;
}
}

criticalSection.run();
ready[id| = false;
ready = ready;
spinning|id| = false;
spinning = spinning;

What should we do?

* More testing

* increases our confidence in the software deployed, but we will never know if
there are more bugs to discover...

* Prove our system has no bugs!
 What do you mean by “no bugs”?
* Aaaaand, what do you mean by “prove”?

* Insight: a server is driven by messages

|, Noraneko,
want cookies!

/ Baker, wake up!

Noraneko
wants cookies!

Modeling the whole system

* The state space of the whole system = Cartesian product of all its
components

e State Machines

* |nitial states

* One of g9, Sg1,S02, -
* State transitions

* Functions f:S - S

* Desirable properties
» Safety: a system never does what it isn’t supposed to do

* Correctness: a system does what it is supposed to do
* Liveness: a system always makes progress

Invariants

* Some properties are desired
* Adigital telephone line should never be hijacked
* A bomb should never explode when it’s not okay

* If, for every reachable state s, P(s) holds, then P is called an invariant
* Write down what you want as invariants
* Prove them

* If you can’t, then your protocol/algorithm/... is likely to be wrong!

How to prove?

* Note that a system can often have
* infinitely many states,
* infinitely many transitions,
e and infinitely many (wrong) behaviors and outcomes

* Let’s try to make the properties “transitive”
* If the property P holds for initial states
* For all transitions s — t, if we can prove P(t) when P(s) holds
* Then property P holds for all states

e Such invariants are “inductive”

Induction

* Peano axioms, fifth e Structural induction
 |If |If
* P(0) e P(s0) for all initial states sO
 if P(i) then P(i+1) * if P(s) then P(t) when s->t
* Then * Then
* For all natural number n, * For all reachable state s,

P(n) holds P(s) holds

Invariant

Inductive invariant

- -
- -

..........

Specification

Model Checking

* Given a specification, check if the properties are satisfied

e Approach 1: Brute force
* Enumerate all possible states and verify invariants on them one by one
e E.g.. TLC

* Approach 2: SAT-based

e Turn to logic calculi for help
* E.g.. IC3, Ivy

Facts about Model Checking

* There are infinitely many servers, clients, states, variables, values...

* Given a finite model, we can enumerate all possible states
* The size of the state space exponentially grows with the size of the model
* Only tractable for finite and small models
* Yes, we cannot handle infinity

* Given inductive invariants, SAT-based provers cannot handle
quantifiers nicely
 Domains are usually infinite
* More often than not, these fragments of logic are undecidable

Observation

* Observe the inductive invariants of finite and small models
* The size grows, but not the complexity

* High regularity

—(semaphore(S0) A link(C1,.
=(link(C0, SO0) A link(C1, S0)

—(semaphore(S0) A link(C0, €M

~ 1 asmallinstance

—(semaphore(S0) A lini
—(semaphore(S0) A lini
—(semaphore(S0) A linl
—(semaphore(S0) A linl
Safety Property

—(semaphore(S0) A link(CO0, S0))
—(semaphore(S0) A link(C1, S0))
—(semaphore(S0) A link(C2, S0))
—(semaphore(S0) A link(C3, S0))
—(semaphore(S1) A link(CO0, S1))
—(semaphore(S1) A link(C1, S1))
—(semaphore(S1) A link(C2, S1))
—(semaphore(S1) A link(C3, S1))
Safety Property

> > > > > > > >

Insight

Find an inductive

invariant for a Generalize
small case

Automate
Find

(spec ->
model ->
ind. Inv.)

Check Generalize

(inf. Ind. (finite ->
Inv. & spec) infinite)

Some Problems

* How big should the small case be?
 Unanswered, but the intuition is there

* Even small cases are intractable!
* Add axioms to guide the checker (concretization)

* What if the checker fails to prove the inductive invariant?
* Included instance-specific clauses -> prune them
* Model too small so the generalized invariant is not inductive -> increase size

Methodology

Safety property violation

C Increase si29<

@ Concretize\

Initial size

Protocol.i II @ Create a
td] finite instance)

\
\
: @ Debug
|

Out of Memory

Protocol.vmt @ Averroes

(AVR)

oy

Ry E |

Counterexample Protocol.finv ——

@ Prune Assertion ® |
invariant violations vy

® Generalize)—> Protocol_inv.ivy

Invariant generation on a finite instance
(Section 4)

Figure 1. Flow of I4. White boxes are fully automated, while gray boxes denote manual effort.

Invariant generalization
(Section 5)

Correct

Demonstration

Traditional
Protocol approach lvy L4
500 lines
Lock server (Verdi) <1 hour Automated
A few days
Distributed lock (IronFleet) A few hours <5 min

Demonstration

Protocol F M G | total
Lock server 0.02 0.0 | 0.8 0.8
Leader election in ring 4.0 0.1 2.0 6.1
Distributed lock protocol 30.6 | 53.3 | 75.5 | 159.5
Chord ring maintenance 386.1 | 218.5 | 24.3 | 628.9
Learning switch 2.9 0.8 | 69| 10.7
Database chain replication 4.2 23| 6.2 | 126
Two-Phase Commit 2.6 0.1 1.6 4.3

Table 4. Runtime results (in seconds). F is the time required
to find the finite inductive invariant; M is the time is takes
to minimize the finite inductive invariant; and G is the time
to generalize the clauses and perform invariant pruning.

Conclusion

* Regularity matters

* By combining existing technology, we can achieve a high level of
automation in verification of distributed protocols

