
Don’t shoot down TLB shootdowns!
Nadav Amit

VMware Research
Amy Tai

VMware Research
Michael Wei

VMware Research

Abstract
Translation Lookaside Buffers (TLBs) are critical for build-
ing performant virtual memory systems. Because most pro-
cessors do not provide coherence for TLB mappings, TLB
shootdowns provide a software mechanism that invokes
inter-processor interrupts (IPIs) to synchronize TLBs. TLB
shootdowns are expensive, so recent work has aimed to avoid
the frequency of shootdowns through techniques such as
batching. We show that aggressive batching can cause cor-
rectness issues and addressing them can obviate the benefits
of batching. Instead, our work takes a different approach
which focuses on both improving the performance of TLB
shootdowns and carefully selecting where to avoid shoot-
downs. We introduce four general techniques to improve
shootdown performance: (1) concurrently flush initiator and
remote TLBs, (2) early acknowledgement from remote cores,
(3) cacheline consolidation of kernel data structures to reduce
cacheline contention, and (4) in-context flushing of userspace
entries to address the overheads introduced by Spectre and
Meltdown mitigations. We also identify that TLB flushing
can be avoiding when handling copy-on-write (CoW) faults
and some TLB shootdowns can be batched in certain system
calls. Overall, we show that our approach results in signifi-
cant speedups without sacrificing safety and correctness in
both microbenchmarks and real-world applications.

ACM Reference Format:
Nadav Amit, Amy Tai, and Michael Wei. 2020. Don’t shoot down
TLB shootdowns!. In Fifteenth European Conference on Computer
Systems (EuroSys ’20), April 27–30, 2020, Heraklion, Greece. ACM,
NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3342195.3387518

1 Introduction
Translation lookaside buffers (TLBs) are per-core caches
which store virtual to physical memory mappings. TLBs are
vital for ensuring the performance of the virtual memory
system which enables the modern multitasking operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387518

Flush TLB
entries

Time

Flush TLB
entries

Flush TLB
entries

Synch
waiting

Initiator Remote Remote

Flush kernel and
user TLB entries

Flush
kernel and
user TLB
entriesSynch

waiting

Flush kernel and
user TLB entries

Flush kernel and
user TLB entries

PTI

PTI
(remote)

Concurrent
flushes

+ early ack

(a) (b)

Flush user-level TLB
entries on return to
user via invlpg

Initiator Remote Remote Initiator Remote Remote

Figure 1. (a) In the baseline Linux TLB shootdown proto-
col, much of the shootdown is spent synchronously waiting
for remote flushes. (b) Kernel page table isolation (PTI), a
mitigation for Meltdown, exacerbates this wait time.

system. If a processor cannot find the mapping for a vir-
tual memory address in the TLB, a costly TLB miss occurs
which results in a time-consuming page walk to calculate
the correct physical address from the page tables.

At the same time, it is critical for the mappings cached in
the TLB to reflect the actual state of the memory resident
page tables, providing what is known as TLB coherence. Oth-
erwise, an application could access a stale mapping which
could cause correctness or security issues. To update the
TLB state, the operating system (OS) performs a TLB flush,
which can either selectively remove or drop all mappings
stored in the TLB. In most processors, however, TLBs are
not coherent caches, so in a multiprocessor system, the OS
must perform an explicit TLB shootdown [8], which sends
an inter-processor interrupt (IPI) to remote cores to flush
their TLBs. TLB shootdowns are costly, as they invoke a com-
plex protocol which burdens all processors in the system
and must wait for the acknowledgement of remote cores,
requiring several thousand cycles to complete. The Melt-
down hardware vulnerability [22] and the kernel Page Table
Isolation (PTI) mitigation [30] used to defend against it has
increased the requirement for synchronizing the TLBs for
security. Figure 1 shows why TLB shootdowns have high
overhead.
State-of-the-art work tries to avoid TLB shootdowns in

order to improve the overall performance of virtual mem-
ory. These approaches can be broadly categorized into two

1

https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/3342195.3387518

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

Flush TLB Flush kernel TLB

(a) (b)

Complete user TLB
flush w/ INVLPG

Time Initiator Remote Remote Initiator Remote Remote

Flush TLB
Flush kernel TLB

Figure 2. (a) In our modified protocol, we avoid synchronous
waiting by concurrently flushing the local and remote TLBs
and early acknowledgement from remote cores. (b) To deal
with PTI, we defer user-level TLB flushes until kernel exit, in
order to use the more efficient INVLPG instruction on user-
level entries.

categories: batching, which can be performed either syn-
chronously or asynchronously [2, 15, 31], and interface changes,
which relax the requirements of traditional POSIX system
calls, alleviating the OS from the burden of synchronizing
TLBs through shootdowns [21]. While both approaches have
been shown to provide significant speedup, we argue that ag-
gressively eliminating TLB shootdowns can be error-prone
and sometimes result in performance degradation and even
safety violations. Interface extensions have the potential to
provide performance improvements, yet adapting new OS
interfaces usually takes considerable time.
In this work, we take a bottom-up approach instead, fo-

cusing first on improving the performance of the TLB shoot-
down and then carefully selecting TLB shootdowns to batch
or eliminate. We argue that we do not have to resort to
new microarchitectures or interface-breaking shootdown
protocols. Instead, by spending our efforts making careful
improvements to existing shootdown protocols, we not only
achieve performance gains comparable to other redesigns,
but also identify improvements that apply to TLB shoot-
downs triggered by any type of virtual memory operation.
For example, we introduce two optimizations to the Linux
TLB shootdown protocol: concurrent flushing, which flushes
initiating and remote TLBs concurrently, and early acknowl-
edgement, where remote cores acknowledge a shootdown as
soon as they enter the interrupt handler, instead of after their
local TLB flush. These two powerful optimizations eliminate
much of the synchronous waiting present in existing TLB
shootdown protocols.

We also implement cacheline consolidation, which consoli-
dates the shared state necessary for a shootdown, thereby
reducing cacheline contention. To alleviate the additional
overhead of PTI on TLB flushing, we introduce in-context
flushes, which defers flushing userspace entries to when the
kernel switches the address space back to the user context.

1. Concurrent Flushing (§3.1)
General

techniques
2. Early Acknowledgement (§3.2)
3. Cacheline Consolidation (§3.3)
4. In-Context Flushes (§3.4)

Use-case specific 5. CoW Fault (§4.1)
6. Userspace-safe Batching (§4.2)

Table 1. Optimizations introduced in this work.

This allows us to take advantage of the INVLPG instruction,
which is faster than the INVLPCID instruction, which is used
to invalidate pages in a different context and must be used if
flushing userspace entries from the kernel address space.

These four techniques effectively improve performance for
any triggered shootdown. We further identify specific cases
in which TLB flushes can be eliminated and shootdowns
can be batched. For copy-on-write (CoW) pages, we avoid
the local TLB flush by leveraging the page fault handler. We
also introduce userspace-safe batching, which batches the
flushing of mappings that will only be accessed in userspace.
This applies to system calls such as msync and munmap. A
summary of our optimizations can be found in Table 1.

We apply our optimizations to Linux 5.2.8 and show that
we obtain significant performance improvements in both mi-
crobenchmarks and real-world workloads such as Sysbench
and Apache. This paper makes the following contributions:

• We provide background on TLB shootdowns and how
current approaches which focus on avoiding shoot-
downs can introduce more problems than the perfor-
mance improvements they provide (§2).

• We describe our bottom-up approach, which identifies
techniques for improving the performance of shoot-
downs and selectively reducing shootdowns (§3-§4).

• We evaluate the performance of our optimizations on
Linux 5.2.8 and show that our approach extracts signif-
icant performance improvement without sacrificing
safety or usability (§5).

• We discuss other sources of inefficiencies around TLBs,
such as undocumented behavior which we leave as
potential sources of optimizations in future work (§7).

2 Background
TLB flushes and shootdowns are mechanisms used by operat-
ing systems to synchronize page table entries (PTEs) cached
in TLBs with the underlying page tables. Our work focuses
on the Intel x86 architecture, though most other architec-
tures also require software to provide TLB coherence. In the
following sections, we first describe how the Linux kernel
currently performs TLB flushes and shootdowns. Then we
describe related work, which comes in two main categories:
adding new hardware features and software changes, which
primarily focus on avoiding shootdowns.

2

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

2.1 TLB Flushes
The x86 architecture provides several mechanisms to control
the contents of the TLB. The coarsest mechanism is a full
flush, which invalidates all PTEs not marked with a global
bit (G). Kernel pages have the G bit set, as kernel PTEs do not
typically change across context switches, when PTEs are typ-
ically flushed. On the x86, a full flush is achieved bywriting to
a control register known as CR3 [19]. The INVLPG instruction,
introduced in the 80486 (1989), provides fine grain control
by taking a virtual address to be invalidated [19]. Multiple
pages can be invalidated only by calling the INVLPG instruc-
tion multiple times, so software has to weigh the costs of
multiple INVLPG calls against just flushing the entire TLB
by writing to CR3 (both mechanisms have similar costs [17]).
FreeBSD, for example, performs a CR3write when more than
4096 PTEs need to be invalidated, whereas Linux places the
ceiling at 33 [17].
Starting with Westmere (2010), Intel introduced support

for multiple address spaces IDs (ASID), with a feature known
as process-context identifier (PCID). This feature allowed
TLBs to cache mappings of multiple address spaces and as-
sociate each mapping with its address-space ID to perform
address translations correctly and selectively avoid flush-
ing the full TLB upon context switch. Later, Haswell (2013)
extended its support for PCIDs, introducing the INVPCID in-
struction that enables selectively flushing TLB entries of inac-
tive address spaces [19]. However, the adaptation of PCID by
operating systems was slow for two reasons. First, it did not
seem that there were many use-cases in which performance
was degraded by frequent TLB misses caused by frequent
context switches. Second, using PCIDs was nontrivial for
operating systems writers, as the number of address spaces
was limited to 1024, which prevented operating systems from
simply associating process and address space based on the
process ID.

The Meltdown security vulnerability [1, 22] took the com-
munity by surprise, and it turned out PCIDs were essential
for restoring lost performance. Meltdown showed that it is
possible to bypass privilege checks and leak data through
speculative execution on vulnerable processors. As a result,
an attacker may be able to access privileged kernel pages,
which are kept in the TLB through the use of the G bit. The
mitigation, kernel page table isolation (PTI) [9, 16], turns the
G bit off for kernel data pages and introduces the require-
ment of flushing the TLB when exiting the kernel to ensure
that kernel data is inaccessible, even speculatively, to the
user. This requirement increased the number of TLB flushes
that must occur and also reduced the utility of the TLB by
increasing TLB misses. In CPUs that supported PCIDs, these
TLB flushes could be eliminated by associating each process
with two address spaces instead of one—a user address space,
which only holds mappings of user accessible pages, and a
kernel address space that holds both the mappings of the

user and the kernel. Consequently, on CPUs that suffer from
the Meltdown vulnerability, every TLB flush needs to be
performed twice, once on the kernel address space and once
on the user address space.
The operating system may perform a TLB flush for a

number of reasons, for example: memory deduplication [33],
reclamation, huge page compaction [12] and NUMA node
memory migration [5]. Applications may trigger a flush by
calling system calls which modify PTEs such as mprotect,
mmap, munmap and msync, as well as writing to copy-on-write
(CoW) pages.

2.2 TLB Shootdowns
When the OS needs to update or remove a PTE in another
core’s TLB, the processor must do more than simply flush the
TLB (a local operation) since x86 hardware does not provide
TLB coherence. Instead, the OS performs a TLB shootdown,
which allows a core (known as the initiator) to flush PTEs
from the TLB of other cores (known as the remote cores). In
order to perform the shootdown, the initiator sends an IPI
with work, a data structure which indicates which entries
need to be flushed, to remote cores, which perform flushes
locally and send an acknowledgement back to the initiator
by clearing a bit that the initiator spin-waits on. IPIs can be
sent to a single target CPU or multiple ones using a multicast
IPI. On Intel CPUs, when the number of cores is greater than
8, the CPUs are broken into clusters of up to 16 CPUs and
each multicast IPI can only target a subset of one of the
clusters [18, 19].
While sending an IPI and invoking the interrupt handler

can take considerable time, software overheads are not neg-
ligible either. When the kernel modifies a PTE, it needs to
determine on which CPUs to initiate TLB flushes. For each
address space the kernel tracks in which CPUs an address
space is currently active. Flushing PTEs from an address
space that is inactive on a remote core does not require an IPI.
Instead, the kernel tracks the “generation” of each address
space, which it increments whenever PTEs are modified. Be-
fore the kernel loads an address space, whose stale mappings
might be cached in the core’s TLB, it uses the address space
generation to determine whether PTEs have changed while
the address space was inactive. If so, the kernel flushes the
address space.
Overall, the current TLB shootdown protocol in Linux

is quite expensive, costing thousands of cycles compared
to the ≈200 cycles for a local INVLPG instruction [7, 17].
The real cost is often higher because a shootdown may
cause a full flush, resulting in increased TLB misses in subse-
quent execution. The kernel also typically holds locks during
flush, increasing contention [10, 13], and if the remote cores
have interrupts disabled, for example, while in device driver
code [11], the latency to handle and acknowledge the IPI
may be even higher.

3

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

2.3 Related Work
Since TLB shootdowns have a high cost, work from the Linux
kernel community, academia, and industry have sought to
reduce their impact. Some of this work includes hardware
changes, while others focus on changes in software only.

2.3.1 Hardware Changes
New hardware features have been proposed to reduce the
cost of TLB shootdowns or eliminate the need for the OS to
initiate them altogether. This includes implementing TLB
coherence itself by adding new [29] or augmenting existing
cache coherence protocols [34], adding remote cache invali-
dation instructions [3], adding directories so caches can be
invalidated selectively [32], adding microcode support for
hardware IPI handling [25], adding bloom filters to reduce
invalidations [26], or adding time-based invalidation to TLB
entries so that shootdowns can be avoided [4].

While new hardware can greatly improve the performance
of shootdowns, they come at the cost of additional hardware
complexity, and the OS may also have to be modified to take
advantage of the changes. In addition, new hardware cannot
improve existing processors.

2.3.2 Software Changes
Software based approaches primarily focus on avoiding shoot-
downs in order to avoid paying the penalty of the IPIs that
initiate a shootdown. ABIS [2] introduces several techniques
to Linux which exploit page access tracking to reduce the
number of unnecessary TLB flushes and shootdowns. Bar-
relfish [7] attempts to avoid IPIs by using message passing
instead of IPIs. LATR [21] avoids IPIs and handles shoot-
downs lazily, deferring the shootdown to be performed asyn-
chronously through amessage passingmechanism. RadixVM
[10] attempts to avoid shootdowns by tracking page map-
pings through a cache-optimized radix tree.
Notably, some of these works were evaluated without

multicast IPIs [10, 21], under the assumption that IPIs have
to be issued synchronously, and may not yield the same, or
any, improvement with now prevalent APICs which support
multicast IPIs. For instance, RadixVM [10] is evaluated on a
system where shootdowns take ≈500,000 cycles, whereas a
shootdown in Linux with a x2APIC in cluster mode takes on
the order of several thousand cycles.

In addition, many of these systems change the interface for
the programmer. Barrelfish does not provide full POSIX com-
patibility. RadixVM runs on a research kernel developed on
xv6 [14] and cannot run standard POSIX applications. Lazy
flushing in LATR changes the semantics of POSIX memory
operations by not freeing pages immediately, causing appli-
cations which expect page faults when accessing unmapped
pages (used commonly by userfaultfd) to fail. Furthermore,
lazy flushing comes with a cost: if a flush is typically done
with a lock, the bookkeeping required to defer the complete

Cacheline
consolidation (§3.3)

Flush user TLB
entries on return to

user w/ INVLPG

Flush kernel
TLB entries

Complete user TLB
flush on return to
user via INVLPG

Flush kernel
TLB entries

Time

1
Concurrently flush local
kernel TLB while waiting for
remote flushes (§3.1) In-context flushing

of user-level TLBs
on return to user (§3.4)

Early acknowledgement
of remote flushes (§3.2)

1

3

2

4a

4b

Initiator Remote

3

2 4

Figure 3. We identify four opportunities to improve the
current TLB shootdown protocol.

context of the flush, including the locks that need to be reac-
quired and state that must be recalculated, is non-trivial. As a
result, lazy flushing can be error-prone when combined with
code which take locks, resulting in correctness or potentially
even safety issues1. Finally, a practical implementation of
ABIS would require hardware page sharing tracking.

2.4 This Work
In this work, instead of avoiding shootdowns, we take a
principled bottom-up approach to dealing with TLB syn-
chronization. The goals of our system are to first improve
the performance of a single shootdown, then to reduce the
number of overall shootdowns by examining the remaining
bottlenecks. By speeding up the existing shootdown mecha-
nism and reducing overuse, we are able to show significant
performance improvement without resorting to interface
changes which lead to increased complexity and burden
on developers. Our work focuses exclusively on software
changes, but takes advantage of hardware changes such as
the PCID feature available on newer x86 processors. The
following section describes the architecture of our system.

3 Improving TLB Shootdown
Our approach begins by modifying the baseline Linux TLB
shootdown protocol (Figure 1). We find that there are several

1One such issue can be found in LATR’s implementation where NUMA
migration should take place. mmap_sem should be taken in task_numa_work
in order to flush. Because mmap_sem is not taken, the VMA may be invalid
by the time change_prot_numa() is called again.

4

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

opportunities for improving the protocol, which include con-
current flushing, early acknowledgement, cacheline consolida-
tion and in-context TLB flushes. We discuss each optimization
in the following sections, and Figure 3 presents the final
protocol combining all techniques.

3.1 Concurrent Flushes
Within a TLB shootdown, there are no constraints on the or-
dering of local and remote flushes. However, both Linux and
FreeBSD sequentially flush local then remote TLBs, which
means the initiating core is spinning for an extended time
while waiting for remote acknowledgements. Instead, we
observe that the initiating core can use this waiting period
to flush its local TLB. Flushing the TLB entry of a single
PTE can take over 100ns. In Linux, up to 33 entries can be
flushed during a single TLB shootdown operation, which
means a local TLB flush can take over 3µs [17]. If the initiat-
ing core does this local flush while waiting for remote TLBs,
we directly eliminate this latency from the critical path.

We therefore modify the shootdown algorithm so that the
initiator flushes its local TLB while waiting for IPI acknowl-
edgement from remote cores (see Figure 3).

3.2 Early Acknowledgement of Remote Shootdowns
Currently, responder cores do not communicate shootdown
success to the initiator until they have finished local invali-
dation. Performing TLB shootdowns in a fully asynchronous
manner—sending the IPI and continuing execution immedi-
ately after—is unsafe. There is no guarantee that the respond-
ing core would receive the IPI immediately, as interrupts
might be masked on the responding core. There are also no
architectural guarantees on how long the IPI delivery would
take. In the meanwhile, the sending core might assume that
the flush was completed, which can lead to data corruption
or security issues.
Instead, we propose that responder cores acknowledge

success as soon as it is safe. In other words, responders can
send acknowledgements as soon as they can ensure that no
TLB entries in the shootdown are accessible. In particular,
once a responding core enters the TLB shootdown inter-
rupt handler, it does not use any userspace mappings in the
page-tables. Therefore, it is safe for the remote core to send
acknowledgement to the initiator as soon as it enters the in-
terrupt handler, eliminating TLB invalidation on the remote
core from the critical path.

There are two exceptions. First, if page-tables are released,
speculative page-walks can cause machine-check exceptions,
as noted in Section 2. This optimization therefore cannot
be used if page-tables are released. Page-tables are mainly
released during the munmap system call. In Linux, there is al-
ready a flag in the work data structure that indicates whether
page tables are released, so the initiator decides whether to
use early acknowledgment based on this flag and instructs
the responders accordingly.

TLB

SMP

lazy-mode . . .

flush_tlb_info

CFQ head

. . .

CFD entry

CFD entry

CFQ head lazy-mode

CFD entry flush_tlb_info

24 bytes 40 bytes

8 bytes
. . .

. . .

(a) (b)

flush_tlb_info

. . .

CFD entry flush_tlb_info

. . .
Figure 4. (a) Linux separates all cachelines required during a
TLB shootdown based on whether they contain TLB or SMP
information. (b) We observe that we can cleanly inline these
in-memory variables in order to reduce cache contention.

Second, if another higher priority interrupt is delivered
after the TLB shootdownwas acknowledged but before flush-
ing took place, the interrupt handler might access userspace
memory using the inconsistent TLB. In Linux, only the non-
maskable interrupt (NMI) can be delivered during TLB shoot-
down. A similar issue might occur if a probe that was set
by the user (kprobe in Linux) accesses the userspace mem-
ory. Both the NMI handler and the probing mechanisms in
Linux already incorporate code to ensure, before accessing
userspace memory, that the userspace mappings are those
of the running process. This is already required to avoid
inconsistencies that might occur when an NMI is delivered
in the middle of a context switch (see nmi_uaccess_okay())
We extend this check to ensure all TLB flushes have been
completed. Because the NMI handler is already expensive,
this check adds minimal overhead.
Note that early acknowledgement complements concur-

rent flushes as described in Section 3.1. IPI delivery often
takes more time (potentially over 1000 cycles) than TLB flush-
ing (∼ 200 cycles per entry), so when concurrent flushes are
used with early acknowledged remote shootdowns, the ini-
tiator’s local TLB flush still overlaps (roundtrip) IPI delivery.

3.3 Cacheline Consolidation
The Linux TLB shootdown protocol generates unnecessary
cache contention due to the way the TLB layer is abstracted
from the SMP (symmetric multi-processing) layer, which
maintains per-core queues of function and data to be invoked,
sends IPIs, and waits for acknowledgments.

We do not consider the FreeBSD TLB shootdown scheme,
because FreeBSD’s smp_ipi_mtx mutex only allows a single
TLB shootdown to be delivered and served at a time. In
contrast, Linux’s shootdown protocol allows for concurrent
remote shootdowns.

We highlight four types of cacheline access that are highly
contended during a TLB shootdown (see Figure 4(a)).

5

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

1. Lazy mode indication. Before sending a shootdown,
the initiator checks whether a remote core is in “lazy-
mode”, which means that although it uses the affected
address-space, it is currently running a kernel thread.
If so, an IPI does not have to be sent to the target
core, as the core would check whether a TLB flush
is needed to synchronize the TLB before resuming
the user thread [28]. Cores do not enter lazy-mode
frequently, but the cacheline that holds the lazy-mode
indication is shared with other frequently changing
data holding per-core TLB information, which causes
false sharing.

2. TLB flushing information. This data structure stores
which TLB entries should be flushed and, prior to our
work, was kept on the stack of the initiator core. Ac-
cessing this information can potentially cause TLB
misses which would not occur if the data resided in
a global variable, as the stack is mapped using 4KB
pages and the global variables use 2MB pages, which
are likely to hold other frequently accessed data.

3. Call Function Data (CFD). Used by the SMP layer to
provide the called function and data, as well as to
acknowledge that the function execution completed.

4. Call Single Queue (CSQ).A per-core lockless list of CFD
that are pending execution on a core.

We reduce the contention caused by these accesses by
inlining related information. We colocate the lazy-mode in-
dication with the head of the CFQ as they are likely to be
accessed one after the other. Next, Linux stores each TLB
flush info as a pointer in each CFD, but we observe that
we can inline this info and still fit the CFD within a single
cacheline. Figure 4(b) shows how sharing cachelines across
the TLB and SMP abstractions greatly reduces the number
of contended cachelines during TLB shootdown.

3.4 In-Context Page Flushes
When PTI is turned on, TLB flushes need to be performed on
two address spaces: the kernel’s, which is the active one, and
the user’s. In Linux, if a full TLB flush is needed, for example
since many PTEs are changed, the kernel address space is
flushed immediately, and a deferred flush indication is set for
the user address space. Once the OS returns to user-mode, if
this indication is set, the kernel flushes the user page tables
while it reloads the user address space. The CPU loads the
page tables and performs the TLB flush of the user address
space atomically.
However, when PTEs need to be flushed selectively, the

kernel invalidates the PTEs of both kernel and user address
spaces eagerly. To do so, the kernel uses the instruction
provided by Intel CPUs to selectively flush PTEs: INVLPG,
which invalidates a certain PTE in the current address space,
and INVPCID, which invalidates a PTE in any address space
(note that it can also perform additional types of TLB flushes,

which are outside of the scope of our discussion). Previously
performedmeasurements indicated that INVPCID is slower at
flushing a single PTE than INVLPG, as tested on the Skylake
microarchitecture [23].
Accordingly, the kernel flushes the PTEs in its address

space, which is active, using the INVLPG instruction, but
flushes the user PTEs, which are in an inactive address space
and out of context, using INVPCID since the kernel PCID,
which is active, is different than the user PCID. This in-
troduces significant overhead due to INVPCID’s suboptimal
performance.
Using INVLPG to eagerly flush the TLB, however, can in-

duce overheads instead of improving performance, as it
would require loading the user address space, performing
the required TLB flushes, and then reloading the kernel ad-
dress space to resume execution. The overhead of switching
address spaces can exceed the benefit of using INVLPG, espe-
cially if only few PTEs need to be flushed.

Instead, we decide to defer the flushing of user PTEs until
the user address space becomes the active address space.
Then we can flush PTEs using the more efficient INVLPG
instruction. As this address space is not used on the given
core until the kernel returns to userspace, this deferring does
not introduce correctness issues. This scheme is shown as
(4b) in Figure 3, which we refer to as an in-context page flush.

To enable in-context page flushes, the kernel records the
user address-space flush range (start and end) as well as the
stride shift (i.e., page size) in a per-core data structure. If
multiple flushes are required before returning to userspace,
the kernel tries to merge all pending flushes into a single
range. If the resulting range size exceeds a fixed threshold
(we use Linux’s default of 33 entries), a full flush is performed
upon return to userspace.
There are a few caveats. First, flushing TLB entries im-

mediately before returning to userspace requires a stack in
order to preserve the userspace registers that have just been
reloaded. In rare cases, such as returning to 32-bit compat-
ibility code with IRET instead of SYSRET, no such stack is
available. In this case, we perform a full TLB flush. Further-
more, we do not defer TLB flushes that remove entire page
tables from the page table hierarchy, since in this case we
must flush the TLB before switching to the userspace address
space and context.
Second, since there is no serializing instruction after the

userspace address space is loaded and before the actual return
to userspace, there is the potential for some TLB flushes to
be skipped speculatively. This might occur if the conditional
branch that loops through the TLB flushes is mispredicted
and introduces a security vulnerability. Without addressing
this issue, a malicious user might exploit the Spectre-v1 CPU
vulnerability, to speculatively skip flushes and leak data from
the pages whose PTEs should be flushed. This is problematic,
since at the time of the deferred flushing the pages that are
mapped through these PTEs might already be recycled and

6

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

used for another purpose. To prevent such an attack, we use
the lfence instruction when the loop that invalidates the
user page table PTEs is done.

In-context page flushing creates a subtle interaction with
concurrent flushing (§ 3.1) and early acknowledgement (§ 3.2)
on the initiator core, see (4a) in Figure 3. With concurrent
flushing, the initiator has spare cycles while it waits for
acknowledgment from the remote cores (this is true even
with early acknowledgement). These spare cycles can be
used to flush user-space PTEs, instead of deferring them.
Therefore, we keep flushing user PTEs until the first remote
acknowledgment is received, whereby we defer the rest until
the switch to userspace.

4 Use-case Specific Improvements
The previous section presented techniques to reduce the
overhead of any TLB shootdown. In this section we intro-
duce techniques for avoiding TLB flush for copy-on-write
mappings and reducing the frequency of TLB shootdowns
in some cases. Avoiding TLB flush reduces the amount of
time it takes the initiator to complete its local flush, thereby
improving the overall latency of the shootdown. Reducing
the frequency of shootdowns naturally reduces the amount
of time the kernel spends in this costly operation.

4.1 Avoiding TLB flush for CoW
Copy-on-Write (CoW) is a common memory sharing tech-
nique inwhichmemory pages arewrite-protected and copied
only when they are modified. The first modification invokes
the page-fault handler, which copies the accessed page, up-
dates the PTE to point to the new copy, and sets write per-
missions on the PTE.
Changing the PTE requires a TLB flush, as the PTE now

points to a new target. However, while a TLB shootdown
is necessary if other threads use the same mapping, we ar-
gue that a local TLB flush can be avoided by writing to an
address in the modified page after the PTE is updated. On
CoW events, since the modified PTE was previously write-
protected, the CPU cannot use the old PTE for translation
and instead should walk the page-tables and cache the new
PTE. This avoids the overhead of a PTE flush and its side-
effects (invalidation of the page-walk caches on x86), and
caches the updated PTE, which is about to be used.

This write access might not appear necessary, as the Intel
manual explicitly states a faulting PTE is invalidated during
a page-fault [19]. However, in practice the stale PTE might
be cached in the CPU for two reasons. First, the CPU is free
to cache PTEs speculatively after the page fault is triggered
and before the PTE is updated. Second, the page-fault han-
dler might be preempted and later be scheduled to run on
a different core than the one that triggered the page-fault.
Hence the explicit kernel memory access ensures that the
stale PTE is removed.

Another challenge comes from the fact that the explicit
memory write access does not affect mappings that are po-
tentially cached in the instruction TLB (ITLB). Therefore,
we avoid using this optimization if the PTE is executable to
prevent the unlikely case in which the PTE is cached in the
instruction TLB.
Finally, to avoid any potential races, we do not want the

memory write to corrupt data if it is concurrently written
from another core.We therefore perform an atomic operation
that does not modify the data at the faulting address.

4.2 Userspace-safe Batching
As noted in Section 2, TLB batching, such as the lazy flushing
proposed by LATR, can cause correctness issues if done too
aggressively. However, if the kernel can guarantee that TLB
flushes complete before userspace mappings are accessed,
batching can be safely done. To achieve this guarantee, there
would need to be a memory barrier to check for TLB flushes
every time the kernel prepares to leave kernel mode and
when it needs to access userspace data, for example during
the read system call.

Hence, we only implement TLB batching for suitable sys-
tem calls such as msync, munmap, madvise(MADV_DONTNEED),
which require write-protecting and cleaning PTEs that map
dirty (i.e., recently-written) pages of memory mapped files.
These system calls are ideal candidates for batching because
the memory barrier can be piggy-backed on the release of the
mmap semaphore (mm->mmap_sem), and there are no accesses
to userspace during the system call.
We implement batching by adding a new batched_mode

variable that indicates whether to batch a TLB flush. We also
allocate 4 entries to keep track of the deferred flushes. For
this we use the existing data structure flush_tlb_info.

5 Evaluation
We implement our changes on Linux 5.2.8 and use it as the
baseline in our measurements. Table 2 summarizes the num-
ber of lines of code required for each change. We conduct
our experiments on a Dell R630 server with 2 Intel Skylake
Xeon E5-2660v4 CPUs, each having 14 physical cores and 28
logical cores (SMT threads) and 256GB of memory. We use
the maximum performance governor during our evaluation
to reduce jitter and run each test 5 times.

Every benchmark is also run in two setups, “safe”, which is
Linux’s default mode, and “unsafe”, where we disable kernel
mitigations against recent security vulnerabilities such as
Spectre and Meltdown. This “unsafe” setup helps determine
the effectiveness of our proposed techniques in existing and
future architectures that may no longer require these patches.
The most relevant mitigation that causes a performance dif-
ference between the two setups is page-table isolation (PTI),
which requires in the “safe” setup to perform each TLB flush

7

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

Optimization Lines of code
Concurrent flushes 103
Early ack + Cacheline consolidation 73
In-context page flushing (deferring) 353
CoW 35
Userspace-safe Batching 221

Table 2.Number of lines of code required to implement each
optimization.

Safe Mode Unsafe Mode
1 PTE 39% / 13% 39% / 18%
10 PTEs 58% / 22% 54% / 14%

Table 3. [Initiator / Responder] Overall latency reduction
when initiator and responder are on different sockets, after
applying all four techniques in Section 3.

twice: once for the kernel page tables and once for the user
page tables.

5.1 Microbenchmarks
We measure the performance impact of each of the tech-
niques presented in Section 3 with a microbenchmark that
uses mmap to create an anonymous mapping, touches a num-
ber of pages to trigger their allocation, and then runs the
madvise(DONTNEED) system call, telling the OS these pages
are not needed, thereby causing them to be reclaimed and
the page-table mappings to be removed. This page-table up-
date requires a TLB flush. The benchmark also spawns an
additional thread that runs a busy-wait loop during the test.
This thread acts as a “responder” thread during the TLB
shootdown.
We separately report the number of cycles for the shoot-

down on both the initiator and responder threads. On the
initiator thread, we report the number of cycles that the
madvise system call took. On the responder thread, we re-
port the number of cycles that the thread was interrupted
due to handling the shootdown. Each test runs 100k madvise
system-calls. We run the test 5 times, and report the average
and standard deviation of these executions.

Each experiment is also run on three different core config-
urations: the initiator and responder are either on the same
core, the same socket, or different (NUMA) sockets. We also
present results for when 1 PTE and 10 PTEs are flushed dur-
ing the shootdown. Figures 5 - 8 present the results for all
experiments. In each figure, we report the latencies as we
iteratively activate the optimizations, in the order in which
they appear in each figure’s legend. Finally, in unsafe mode
there is no PTI, so for those experiments we do not show the
in-context flush optimization.

 0

 2000

 4000

 6000

 8000

same
core

same
socket

diff
socket

c
y
c
le

s

base
concurrent
cacheline
early-ack
in-context

5754

4322

5236

3481

7172

4306

(a) Initiator

 0

 1000

 2000

 3000

 4000

same
core

same
socket

diff
socket

3412 3367

2912

2747

3618

3165

(b) Responder

Figure 5. Safe mode, flush 1 PTE.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

same
core

same
socket

diff
socket

c
y
c
le

s

base
concurrent
cacheline
early-ack
in-context

16208

7685

14361

6247

16475

6929

(a) Initiator

 0

 2000

 4000

 6000

 8000

same
core

same
socket

diff
socket

8411

6785

7313

5879

8039

6290

(b) Responder

Figure 6. Safe mode, flush 10 PTEs.

Overall speedup. For the initiator core, we observe that
concurrent flushes (§ 3.1) and early acknowledgement (§ 3.2)
consistently have the largest impact, reducing shootdown
latency by 10%-20% in both safe and unsafe mode.
For the responder cores, concurrent flushes and early-

return have little effect, because these two techniques en-
able the initiator core to reduce the end-to-end latency of
a shootdown. Instead, deferred PTI flushing (§ 3.4) benefits
responder cores, and this effect is more clearly highlighted
when there are more PTE entries to flush, as seen in Figure 6.
Cacheline consolidation also helps reduce latency in respon-
der threads by up to 5% and 10% in safe and unsafe mode,
respectively.
Table 3 summarizes the overall latency reduction for a

shootdown after employing all four techniques.

Concurrent flushes. Performing flushes concurrently pro-
vides the greatest benefit for the initiator. The speedup is

8

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

proportional to the number of entries that need to be flushed
and hence greater when multiple PTEs are flushed (Figures
6(a),8(a)). If only a single PTE is flushed, the benefit of concur-
rent flushes is lower (Figures 5(a),7(a)). In particular, when
the initiator and responder are on the same core, concurrent
flushes in safe mode provide around 38% latency reduction
on the initiator when 10 PTEs are flushed, and only around
10% latency reduction when 1 PTE is flushed.

Furthermore, if the responder resides on a different NUMA
node than the initiator, sending the TLB shootdown request
before performing the local TLB flush hides the responder
code invocation latency, which is greater because the IPI
and flush information must traverse the interconnect. Hence
even when flushing 1 PTE, concurrent flushing results in
20% latency reduction on the initiator (Figure 7(a)).
The benefit of concurrent flushes is greater in safe mode

than in unsafe mode for two related reasons. First, due to
PTI, each PTE needs to be flushed twice, which allows con-
current flushes to eliminate greater overhead. Second, the
security mitigation techniques against hardware vulnerabili-
ties, specifically PTI, cause the latency of entering the kernel
from userspace to be higher. Concurrent flushes hide part of
this latency.

Cacheline Consolidation. While consolidating cachelines
improves the performance of both the initiator and the re-
sponder, its benefit is relatively small. Reducing the number
of cachelines that need to traverse between the initiator
and the responder has the greatest impact when the initia-
tor and responder reside on different NUMA nodes. In this
case, the cache-lines cross the interconnect, inducing higher
overheads. In particular, in Figures 5 and 7, cacheline con-
solidation has a negligible improvement when the initiator
and responder are on the same core. However, this improve-
ment jumps to 5-11% latency reduction for either thread in
both safe and unsafe mode when the threads are on different
sockets. These improvements become greater in Figures 6
and 8, because more PTEs are flushed.

EarlyAcknowledgment. Figures 5- 8 show that the speedup
from early acknowledgment is greater when the initiator and
the responder are further away. Although concurrent flushes
can hide some of the flush latency, the actual TLB flush on
each core will take time, which means the initiator will finish
its flushes some time before the responder.
Therefore, without early acknowledgment, after the ini-

tiator invokes the responder flush, it must wait for both TLB
flushes and for the completion indication. With early ac-
knowledgment this time is effectively shortened to the time
it takes to flush the local TLB and wait for the completion
indication, because the remote TLB flush is removed from
the critical path.
Accordingly, the overhead savings from early acknowl-

edgment are greatest when both TLB flushes take a long
time — when multiple PTEs are flushed or when PTI is on

 0

 1000

 2000

 3000

 4000

 5000

 6000

same
core

same
socket

diff
socket

c
y
c
le

s

base
concurrent
cacheline
early-ack

3134

2461

3238

2278

5256

3195

(a) Initiator

 0

 500

 1000

 1500

 2000

 2500

same
core

same
socket

diff
socket

1561 1562 1596 1562

2230

1810

(b) Responder

Figure 7. Unsafe mode, flush 1 PTE.

 0

 2000

 4000

 6000

 8000

 10000

same
core

same
socket

diff
socket

c
y
c
le

s

base
concurrent
cacheline
early-ack

7432

4120

6950

3578

8979

4168

(a) Initiator

 0

 1000

 2000

 3000

 4000

same
core

same
socket

diff
socket

3489

3271 3276
3130

3903

3351

(b) Responder

Figure 8. Unsafe mode, flush 10 PTEs.

(safe mode) — and when the responder resides on a different
socket (Figure 8a).

While we designed this mechanism purely to improve the
initiator performance, we were surprised to see that early
acknowledgment also improves, although to a lesser extent,
responder performance, specifically when the initiator and
responder are on different sockets (Figure 7b). Based on the
code and the MESI protocol, this should not be due to fewer
cache lines that are passed between the caches. Nevertheless,
the fact that speedup is not proportional to the number of
flushed PTEs hints that this optimization indirectly improves
intercore communication.

In-context flushing. In the safe setup, flushing PTEs in
the user page-tables can have a big impact on performance:
when 10 PTEs are flushed, in-context flushing reduces the
initiator and responder execution time by ∼ 1100 cycles in
all the configurations, as shown in Figure 6.

9

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

Note that in-context flushing not only improves perfor-
mance, but also safety, as INVPCID, in individual-address
invalidation mode, does not flush entries in the page-walk
cache that do not belong to the address being invalidated.
On the other hand, INVLPG flushes the entire page-structure
cache. In practice, this does not appear to pose a problem
in Linux, but might in operating systems that rely on the
selective TLB flush to flush the page-walk cache as well.

 0

 1000

 2000

 3000

 4000

 5000

safe unsafe

c
y
c
le

s

base
all

avoid CoW3776 3633
3514

2502 2462 2327

Figure 9. Impact of avoiding TLB flush during copy-on-
write page-fault. We first measure the impact of the previous
optimizations (all), and then measure the addition of the
CoW technique.

Avoiding CoW Flush Recall that we present a technique
for avoiding a local TLB flush while handling a CoW page-
fault (§ 4.1). Instead, we explicitly remove the PTE by making
a kernel memory access. This optimization applies exclu-
sively to the local (initiator) core and does not affect respon-
der cores, so we only present latency measurements for the
local core.

We create a micro-benchmark that causes a copy-on-write
event as it writes to a private memory-mapped file. We mea-
sure the visible time in cycles that the memory access, in-
cluding the page-fault has taken. The results are shown in
Figure 9 for both safe and unsafe mode. Note that the effect
of the previous optimizations (all) is small, because they are
mostly intended for TLB shootdowns rather than for a local
TLB flush. Avoiding the TLB flush on copy-on-write by ac-
cessing the page further reduces the event time by about 130
cycles in both modes, about 3% and 5% respectively.

5.2 Sysbench
We run Sysbench [20], a multi-threaded benchmark tool for
database systems. We use the benchmark to measure the
overhead of random write to a memory mapped files. The
benchmark periodically calls the fsyncdata system call to
ensure the data persists in the file system. These operations
trigger a TLB flush on a single thread, and TLB shootdown
when multiple threads are used.

We use emulated “persistent” memory, i.e., DRAM which
is reported as persistent memory, as the backing storage
in which the tested filesystem is set, which allows us to
benchmark the system behavior with high speed storage.

We use a 3GB file and leave other parameters in their default
value. We allow the OS to schedule the threads, i.e., we do
not set the affinity of each thread to a certain core. However,
to reduce the variance of the results we set all the threads to
run on CPUs that are associated with a certain NUMA node.
The results are shown in Figure 10, for safe and unsafe

mode. Note that when the number of threads is smaller than
12, each optimization provides an added performance gain
in safe setup, with up to 1.22× speedup.
However, when the number of threads increases above

10, “in-context flushing” in the safe configuration and “early
acknowledgement” in unsafe mode, degrade performance.
Profiling shows that as the number of threads increase above
10, the experienced TLB flush storm causes the existing TLB
generation tracking logic to frequently detect that there are
additional pending TLB flushes. In such cases, Linux’s exist-
ing TLB flushing logic performs a full TLB flush and updates
its internal accounting data structures to indicate that the
outstanding TLB flushes can be later skipped.

This affects both optimizations. If a TLB flushing request
can be skipped, as it was already fulfilled ahead of time,
the TLB flushing function completes very fast and there-
fore there is no benefit in “early response”. Similarly, in the
safe setup, when a full TLB flush is needed, the baseline sys-
tem already flushes the user page-tables efficiently when it
switches back to the user page-tables. The optimization of
“in-context flushing” addresses partial TLB flushes, which
are performed infrequently during such TLB flush storms.

The greatest benefit is provided by “userspace-safe batch-
ing”. In this benchmark each core spends the majority of its
time within the fdatasync syscall, which is why this opti-
mization can provide up to 1.18× performance gain. How-
ever, the benefit of “userspace-safe batching” diminishes
with more threads. This is due to an inherent limitation of
this optimization: it provides its greatest benefit when all the
threads that use the address space are running a system call,
as it avoids sending and waiting on the delivery of an IPI.
In safe mode more time is spent in the trampoline code that
performs entry to the kernel and in the IPI handlers, which
causes the benefit of this optimization to be less than in the
unsafe setup.

An interesting phenomenon occurs in the safe setup, when
the number of threads is between 3 and 5. As shown, the bene-
fit of “concurrent TLB flushes” and “userspace-safe batching”
is lower in these cases. Our analysis indicates that in these
cases, the optimizations cause a higher portion of the TLB
shootdown IPIs to be delivered while user-code is running. It
appears that the slowdown is caused since in the safe setup
dispatching the interrupt handler while userspace code runs
is considerably slower than dispatching it while kernel code
runs. It is not entirely clear why more IPIs are delivered
while userspace code runs, and whether this also occurs in
other workloads.

10

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 5 10 15 20 25

s
p

e
e

d
u

p

threads [#]

base
concurrent

cacheline-consol
early-ack

in-context flushes
userspace-safe batching

(a) safe

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 5 10 15 20 25

s
p

e
e

d
u

p

threads [#]

(b) unsafe

Figure 10. Sysbench random write benchmark using memory mapped memory, and issuing periodic synchronizations
(fdatasync). The file is set on emulated persistent memory. We present the speedup of the benchmark as we sequentially add
each optimization, starting with concurrent flushes.

We also observe that “early acknowledgement”, “userspace-
safe batching”, and “in-context flushing” in the safe scenario
gradually provide lower speedups as the number of threads
increases. This is due to the fact that as the number of threads
increases , the portion of time that the CPU spends perform-
ing tasks that we did not optimize, such as determining the
cores to which the shootdown IPI should be sent, is greater.

5.3 Apache Webserver
The Apache webserver is known to cause a significant num-
ber of TLB flusheswhen it is configured to use the mpm_event
module. This module uses threads to serve web requests, and
although this scheme saves memory, it triggers a significant
number of TLB shootdowns, as Apache creates and tears
down memory mappings of served files upon each request.
As a workload generator we choose wrk, which is multi-

threaded, unlike ApacheBench, and stresses the server more
than other generators such as Siege. Configuring wrk must
be done carefully, as the workload generator attempts to
attain a given request rate per second. Setting the rate or the
concurrency parameters to values that are too high results in
connection errors when the number of threads that Apache
uses is small, thereby distorting the results. We carefully
choose a rate of 150k requests per second, 10 threads and
concurrency level of 10. We change the number of cores that
the server uses through taskset, and report the speedup on
each point. As the benchmark performance plateaus after it
uses 11 cores (at roughly 110k requests/second), we report
the results up to this point.

When Apache webserver was executed with the default
configuration, its results were very noisy. We therefore dis-
abled address space layer randomization (ASLR), kernel ASLR
(KASLR) and some kernel daemons (e.g, KSM). We also dis-
abled the server access log. However, even with these modifi-
cations, we saw that the benchmark results varied whenever
we restarted the Apache server, which was required when-
ever we booted a different kernel. This noise accounts for
the performance dip when ≤ 2 threads are used in safe mode
(Figure 11(a)). Nevertheless, the overall results have reason-
able standard deviation (<3%) and the relative trend lines in
Figure 11 are consistent, suggesting the results are merely
skewed slightly down.

The results of this benchmark indicate that for this work-
load significant performance gains come primarily from two
of the optimizations: concurrent flushes, which provide a
speedup of up to 1.1x and in-context flushing, which pro-
vides a speed of up to 1.05x. Unlike the sysbench benchmark,
this workload does not cause TLB flush storms that cause
full TLB flushes to be performed instead of selective ones.
As a result, the speedup from in-context flushing is higher.

The benefit of other optimizations is relatively small, which
is reasonable given the workload. Recall from Section 5.1
that the cacheline consolidation optimization provides the
greatest speedup when multiple sockets are used, and the
early-ack optimization is most useful when inter-core com-
munication and TLB flush time are both high. Since the
workload is run on a single socket and the served webpages
are smaller than 12KB (3 memory pages), these optimizations
provide limited value.

11

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 2 4 6 8 10

s
p

e
e

d
u

p

cores [#]

base
concurrent

cacheline-consol
early-ack

in-context flushes
userspace-safe batching

(a) safe

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 2 4 6 8 10

s
p

e
e

d
u

p

cores [#]

(b) unsafe

Figure 11. Apache webserver using multithreaded modules and serving concurrent requests. We present the speedup in
respect to the number of handled requests. We sequentially add each optimization, starting with concurrent flushes.

As for “userspace-safe batching”, although we modified
the munmap syscall to defer TLB flushes and indicate that
other cores not send IPIs initiating TLB flushes during the
system call, this optimization does not seem beneficial for
this workload. Again, this is reasonable considering the fact
that the Linux kernel already batches the flushes during
munmap, and the workload spends time in the kernel execut-
ing other system calls (mmap, send) and handling page-faults.
Hence further work is still needed to make this “userspace-
safe batching” approach beneficial for general workloads
while preventing it from introducing performance regres-
sions.

It should be noted that the reduction in speedup that takes
place when 11 cores are used is due to the fact that the
benchmark performance saturates at this point, as we use
10 threads for our workload generator. This reduction is
not related to the previously mentioned limitations of our
solutions.

6 Discussion
Our evaluation shows that the significant performance gains
from our optimizations reveal that current software does not
extract maximum performance when managing TLBs. We
are able to show performance improvements on unmodified
workloads without adding additional interfaces or relaxing
the semantic guarantees provided by the kernel.
Given that TLB shootdowns are a relatively mature part

of modern operating systems, we believe that inefficiencies
in how TLB shootdowns are dispatched and handled arise
from a lack of principled software and hardware co-design.
From the perspective of the operating system developer, the
tools for manipulating TLB state are often a black box, where

details about how the processor operates are hidden away
under the guise of ’microarchitectural details’. For example,
processor specifications often state that more TLB entries
can be flushed than requested, even if this is never observed
in practice. This leads to OS developers designing mecha-
nisms which are much more conservative than they need to
be. Meltdown [1] and Spectre [24] have both shown that mi-
croarchitectural details can and should matter to developers,
as they are key to understanding and maximizing hardware
performance. If hardware vendors provided less conservative
guidance about the behavior of existing primitives, software
developers could make better decisions on which primitive
to use and how.

At the same time, during the development of our optimiza-
tions, we often found ourselves wishing that the hardware
could provide basic primitives that would greatly enhance
the performance of the TLB shootdown protocol. For in-
stance, if it were possible to attach a message with a TLB
shootdown, which sends a multicast message to other proces-
sors in hardware, we would have been able to avoid sending
additional data through shared memory, which results in
unnecessary coherence traffic. To truly maximize the perfor-
mance of shootdowns, which generate significant overhead,
hardware and software must be co-designed so that the OS
has the right tools needed to manipulate the TLB efficiently.
As many hardware features have migrated to microcode [6],
many changes to the hardware can actually be implemented
as software itself.

7 Future Work
We have submitted our optimizations as patches to Linux and
have received positive feedback from the Linux community.

12

Don’t shoot down TLB shootdowns! EuroSys ’20, April 27–30, 2020, Heraklion, Greece

4KB …

Guest page-tables:

Host page-tables: 4KB 4KB 4KB

4KB

4KB

2MB

A B C

4KB

4KB

Figure 12. Page fracturing: the TLB can cache any of the
guest-to-host mappings for a guest hugepage. For example,
A and B can be separately cached in the TLB. This behavior
causes both “page splintering” and an unnecessary num-
ber of TLB flushes on Intel CPUs. For example, even if C is
flushed, the processor will initiate a full TLB flush to deal
with possible page fracturing elsewhere.

We hope to upstream our changes and to integrate them into
mainline Linux soon. However, much work is left in opti-
mizing how Linux manages TLBs and uncovering behaviors
that mismanage TLB state.
For example, one surprising behavior we have observed

on Intel CPUs is the result of “page fracturing”. Under vir-
tualization, the TLB caches translations from guest virtual
addresses (GVAs) directly to host physical addresses (HPAs),
which merges the translations from GVAs to guest physical
addresses (GPAs) in the guest page tables, and the transla-
tions from GPAs to HPAs from the host page tables. Con-
sequently, a guest hugepage (2MB) can be associated with
many host 4KB page mappings, thereby “fracturing” the
guest page, as shown in Figure 12. The TLB is free to cache
any of the 4KB page mappings of the address translation,
a behavior known as “page splintering” [27], which causes
TLB pressure and might increase the number of TLB misses.

Page fracturing, however, causes an additional, previously
undiscussed challenge when a selective TLB flush is needed.
The guest is allowed to selectively flush a 2MB page (e.g.,
using the INVLPG instruction), but flushing such a page re-
quires the CPU to flush all the 4KB translations for the other
guest addresses in the same 2MB page. Intel confirmed that
this is the expected behavior of the CPU. We speculate that
Intel CPUs maintain a flag that marks whether any cached
TLB translation is a result of a page walk through a 2MB
guest mapping and a 4KB host mapping. If this flag is set,
any selective TLB flush might cause a flush of the entire TLB
to prevent the TLB from holding stale 4KB translations.
Our experiments confirm this behavior. Table 4 summa-

rizes the number of dTLB misses as reported by performance
counters after either a full or selective (single page) flush.
Note that these page sizes are not related to the size of the
flushed pages: the flushed page was not mapped in the page-
tables so it could not have been cached in the TLB.

Host pg size Guest pg size Full Flush Selective Flush
VM 4KB 4KB 103M 93K

4KB 2MB 102M 102M
2MB 4KB 103M 2.9K
2MB 2MB 4M 2.5K

Bare- 4KB - 5M 789
Metal 2MB - 1M 537

Table 4. Number of dTLB misses after a full or selective
page flush. Notice that if the guest has hugepages (2MB) that
are mapped to 4KB pages on the host, a selective flush will
cause an unusually large number of TLB misses, due to the
processor actually executing a full TLB flush.

2MB pages are commonly used by operating systems, for
example to hold kernel code, so issuing multiple selective
TLB flushes in a VM instead of a single full TLB flush is not
beneficial, since the TLB would be fully flushed anyway due
to the special bit.
To mitigate the full TLB flush that deals with page frac-

turing, the CPU instruction set can be extended to allow the
VM OS to convey the size of the invalidated page and avoid
unnecessary full TLB flushes when a 4KB page is flushed
(for example, C in Figure 12). As an intermediate software
solution, the host may also inform the VM OS, using a par-
avirtual protocol, whether page fracturing may happen. This
would allow the VM OS to avoid issuing multiple selective
TLB flushes, which are slower than a full TLB flush and does
not provide any benefit, since they do not preserve other
TLB entries.

Page fracturing is only one of many undocumented behav-
iors which demonstrate that the nuances of the TLB are still
poorly understood despite their maturity.We hope to address
page fracturing and many other undocumented behaviors
which lead to inefficient TLB usage in Linux in future work.

8 Conclusion
In this paper, we revisit TLB shootdowns and identify ample
room for improvement. We present four techniques that im-
prove the performance of a TLB shootdown: concurrent TLB
flushing, cacheline consolidation, early remote acknowledge-
ment, and in-context PTI flushing, as well as identify special
cases during CoW faults and msync handling where TLB
flushes can be avoided or TLB shootdowns can be batched.
We can reduce the latency of a TLB shootdown by up to 58%
for initiators and 22% for responders. We show that com-
bined, our optimizations result in up to a 1.25 × performance
improvement on workloads such as Sysbench and Apache.
In summary, we observe that contrary to popular dogma,
kernels should embrace TLB shootdowns in order to manage
TLB state and correctness.

13

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Nadav Amit, Amy Tai, and Michael Wei

9 Acknowledgements
We thank our shepherd, Yubin Xia, for his helpful comments
on our paper and the anonymous reviewers for their insight-
ful feedback. We also thank the Linux kernel community
for technical discussions and continued support and trans-
parency.

References
[1] CVE-2017-5754. Available from NVD, CVE-ID CVE-2017-5754, https:

//nvd.nist.gov/vuln/detail/CVE-2017-5754, January 1 2018. [Online;
accessed 21-May-2019].

[2] Nadav Amit. Optimizing the TLB shootdown algorithm with page
access tracking. In USENIX Annual Technical Conference (ATC), pages
27–39, 2017.

[3] ARM Ltd. ARMv8-A architecture reference manual, 2013.
[4] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and

Gabriel H Loh. Avoiding tlb shootdowns through self-invalidating tlb
entries. In 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 273–287. IEEE, 2017.

[5] Manu Awasthi, David W Nellans, Kshitij Sudan, Rajeev Balasubramo-
nian, and Al Davis. Handling the problems and opportunities posed
by multiple on-chip memory controllers. In ACM/IEEE International
Conference on Parallel Architecture & Compilation Techniques (PACT),
pages 319–330, 2010.

[6] Andrew Baumann. Hardware is the new software. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems, pages 132–137.
ACM, 2017.

[7] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Har-
ris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In ACM Symposium on Operating Systems
Principles (SOSP), pages 29–44, 2009.

[8] David L Black, Richard F Rashid, David B Golub, Charles R Hill, and
Robert V Baron. Translation lookaside buffer consistency: a software
approach. In ACM Architectural Support for Programming Languages
& Operating Systems (ASPLOS), pages 113–122, 1989.

[9] Alexandre Chartre. mm/x86: Introduce kernel address space isolation.
Linux Kernel Mailing List, https://lkml.org/lkml/2019/7/11/364.

[10] Austin T Clements, M Frans Kaashoek, and Nickolai Zeldovich.
RadixVM: Scalable address spaces for multithreaded applications. In
ACM SIGOPS European Conference on Computer Systems (EuroSys),
pages 211–224, 2013.

[11] Jonathan Corbet. Realtime and interrupt latency. LWN.net, https:
//lwn.net/Articles/139784/, 2005.

[12] Jonathan Corbet. Memory compaction, 2010.
[13] Jonathan Corbet. Memory management locking. LWN.net, https:

//lwn.net/Articles/591978/, 2014.
[14] Russ Cox, M Frans Kaashoek, and Robert Morris. Xv6, a simple unix-

like teaching operating system, 2011.
[15] Mel Gorman. TLB flush multiple pages per IPI v4. Linux Kernel

Mailing List, https://lkml.org/lkml/2015/4/25/125, 2015.
[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémen-

tine Maurice, and Stefan Mangard. KASLR is dead: long live KASLR. In
International Symposium on Engineering Secure Software and Systems,
pages 161–176. Springer, 2017.

[17] Dave Hansen. x86 tlb flushing: Invpcid vs. deferred cr3 write. Linux
Kernel Mailing List, https://lkml.org/lkml/2017/12/5/1082.

[18] Intel Corporation. Intel 64 Architecture x2APIC Specification, 2008.
[19] Intel Corporation. Intel 64 and IA-32 Architectures Software De-

veloper’s Manual. Reference number: 325462-057US, 2015. https:
//software.intel.com/en-us/articles/intel-sdm.

[20] Alexey Kopytov. SysBench: a system performance benchmark.
sysbench.sourceforge.net.

[21] Mohan Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselỳ, Zi Yan,
Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna. LATR: Lazy
translation coherence. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS), 2018.

[22] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
USENIX Security Symposium, 2018.

[23] Andy Lutomirski. x86/mm: PCID and INVPCID. https://lwn.net/
Articles/671299/, 2016.

[24] MITRE. CVE-2017-5715: branch target injection, spectre-v2. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715, 2018. [On-
line; accessed 21-May-2019].

[25] Mark Oskin and Gabriel H Loh. A software-managed approach to die-
stacked dram. In 2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 188–200. IEEE, 2015.

[26] Binh Pham, Derek Hower, Abhishek Bhattacharjee, and Trey Cain.
Tlb shootdown mitigation for low-power many-core servers with l1
virtual caches. IEEE Computer Architecture Letters, 17(1):17–20, 2017.

[27] Binh Pham, Ján Veselỳ, Gabriel H Loh, and Abhishek Bhattacharjee.
Large pages and lightweight memory management in virtualized en-
vironments: Can you have it both ways? In IEEE/ACM International
Symposium on Microarchitecture, 2015.

[28] Rick van Riel. x86/mm/tlb: make lazy tlb mode even lazier. Linux
Kernel Mailing List, https://lkml.org/lkml/2017/12/5/1082.

[29] Bogdan F Romanescu, Alvin R Lebeck, Daniel J Sorin, and Anne Bracy.
Unified instruction/translation/data (unitd) coherence: One protocol to
rule them all. In HPCA-16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture, pages 1–12. IEEE, 2010.

[30] The Linux Kernel. Page table isolation (pti). https://www.kernel.org/
doc/html/latest/x86/pti.html.

[31] Volkmar Uhlig. Scalability of microkernel-based systems. PhD thesis, TH
Karlsruhe, 2005. https://os.itec.kit.edu/downloads/publ_2005_uhlig_
scalability_phd-thesis.pdf.

[32] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion,
Alex Ramirez, Avi Mendelson, Nacho Navarro, Adrian Cristal, and
Osman S Unsal. Didi: Mitigating the performance impact of tlb shoot-
downs using a shared tlb directory. In 2011 International Conference
on Parallel Architectures and Compilation Techniques, pages 340–349.
IEEE, 2011.

[33] Carl A. Waldspurger. Memory resource management in VMware
ESX server. In USENIX Symposium on Operating Systems Design &
Implementation (OSDI), volume 36, pages 181–194, 2002.

[34] Zi Yan, Ján Veselỳ, Guilherme Cox, and Abhishek Bhattacharjee. Hard-
ware translation coherence for virtualized systems. In ACM SIGARCH
Computer Architecture News, volume 45, pages 430–443. ACM, 2017.

14

https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://nvd.nist.gov/vuln/detail/CVE-2017-5754
https://lkml.org/lkml/2019/7/11/364
https://lwn.net/Articles/139784/
https://lwn.net/Articles/139784/
https://lwn.net/Articles/591978/
https://lwn.net/Articles/591978/
https://lkml.org/lkml/2015/4/25/125
https://lkml.org/lkml/2017/12/5/1082
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
sysbench.sourceforge.net
https://lwn.net/Articles/671299/
https://lwn.net/Articles/671299/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
https://lkml.org/lkml/2017/12/5/1082
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://os.itec.kit.edu/downloads/publ_2005_uhlig_scalability_phd-thesis.pdf
https://os.itec.kit.edu/downloads/publ_2005_uhlig_scalability_phd-thesis.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 TLB Flushes
	2.2 TLB Shootdowns
	2.3 Related Work
	2.4 This Work

	3 Improving TLB Shootdown
	3.1 Concurrent Flushes
	3.2 Early Acknowledgement of Remote Shootdowns
	3.3 Cacheline Consolidation
	3.4 In-Context Page Flushes

	4 Use-case Specific Improvements
	4.1 Avoiding TLB flush for CoW
	4.2 Userspace-safe Batching

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Sysbench
	5.3 Apache Webserver

	6 Discussion
	7 Future Work
	8 Conclusion
	9 Acknowledgements
	References

