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Background
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Motivation

e Modern KV stores consume much DRAM as cache
e TCO of data center increases
o  Since mismatch between DRAM’s bit supply and demand

e An NVM block device

offers 10x faster reads than flash
has 5x better write durability than flash
has no write amplification and no RW interference than flash
4x cheaper than DRAM
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Goal: Use NVM to reduce DRAM footprint of MyRocks, while
maintaining comparable performance.



Architecture of MyNVM
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Challenges using NVM as Block Cache

Limited write durability

RW latency: more than 100x slower than DRAM
RW bandwidth: 34x slower than DRAM

Smaller data blocks reduce compression ratio
OS interrupt overhead matters



NVM’s Durability Constraint

e Admission control to NVM cache

o  Lower write traffic to NVM

o  Higher hit rate of NVM block cache
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Satisfying NVM’s Read Bandwidth

e Smaller data block: from 16 KB to 4 KB
o Leadsto4xlargerindexsize
o Lower hit rate of block cache
o Inefficient compression ratio of data block
e Partitioning the database index
o  Overall read bandwidth <2.2 GBps
o Comparable hit rate of block cache
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Figure 12: Non-partitioned and paritioned index structures.
The partitioned scheme uses a top-level index, which points
to lower-level indices.



Satisfying NVM’s Read Bandwidth

e Aligning data blocks with device pages
o  Overall bandwidth ~1.25 GBps
o Lower P99 latency

Blocks are unaligned with NVM pages:
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Figure 14: An illustration of blocks that are unaligned with
the NVM pages, and of blocks that are aligned with the NVM

pages.



Problem on Database Size @RocksDB

e Smaller data blocks have inefficient compression ratio => larger DB size
O  Data blocks are compressed by default
O Do compress block by block

e Sol: Use uniformly sampled dictionary SST by SST



Interrupt Overhead Matters

Polling instead of interrupt
Hybrid polling

Dynamic polling

=>Less CPU I/0 Wait
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Figure 20: Diagrams of the I/O latencies as perceived by the
application, using interrupts, polling, and hybrid polling.



Evaluation

e Configuration
o  MyRocks (96 GB DRAM Cache)
o  MyRocks (16 GB DRAM Cache)
o MyNVM (16 GB DRAM Cache + 140 GB NVM Cache)
o Single instance each

e Workload:

o Traces from DB serving the “social graph” data at Facebook
® Metrics:

o  Overall Mean & P99 Latency

o  Queries-per-Second or QPS
o CPU Consumption & /0 Wait



Mean & P99 Latency
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Figure 22: Mean latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
and MyNVM with 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.
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Figure 23: P99 latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
and MyNVM with 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.



Queries-per-Second or QPS
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Figure 24: NVM hit rate and QPS in MyNVM as a function of Figure 25: Queries per second (QPS) for different cache sizes

NVM size. in MyRocks, compared with MyNVM.



CPU Consumption & 1/O Wait
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Figure 27: I/O-Wait percentage over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.

Figure 26: CPU consumption over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.



Conclusions

e Challenges using NVM as DB cache
o Limited RW bandwidth / latency
o  Smaller data blocks reduce compression ratio
o  Limited write durability
o Interrupt overhead matters
e Solutions
o  Partitioning index
Aligning blocks with physical NVM pages
Utilizing dictionary compression
Admission control to NVM
Hybrid polling
e Evaluation
o Maintaining comparable performance with 6x less DRAM by leveraging NVM
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