Reducing DRAM Footprint with NVM
in Facebook

Presented by: Zhigiang He

Outline

Background

Motivation and Goal
Challenges

Design and Implementation
Evaluation

Conclusions

Background

Block | Data Block Data Block | Filter Index
DRAM MemTables 1 N Block Block

""""""""""""" The Format of a Sorted String Table (SST)

FLASH Databgse
(SST files) 8

MemTable SS Index 1 SSTIndexn
key | offset key | offset

rea‘d key value —> —
write &

| SSTable 1 I | SSTable n I

The Architecture of RocksDB Simplized RW process in LSM KV Store

Motivation

e Modern KV stores consume much DRAM as cache
e TCO of data center increases
o Since mismatch between DRAM’s bit supply and demand

e An NVM block device

offers 10x faster reads than flash
has 5x better write durability than flash
has no write amplification and no RW interference than flash
4x cheaper than DRAM
I >

Byte-addressable NVM?

I
I
n< l ms
DRAM SSD

(@)

o O O

NVM as block dev.

higher latency

Goal: Use NVM to reduce DRAM footprint of MyRocks, while
maintaining comparable performance.

Architecture of MyNVM

Block '
Block = PRAN u MemTables
DRAM ok | | ———171 = H_ |
Cache MemTables

FLASH | Database)
(SST files) Database

FLASH .

(SST files)

Primary RocksDB Improved RocksDB

Challenges using NVM as Block Cache

Limited write durability

RW latency: more than 100x slower than DRAM
RW bandwidth: 34x slower than DRAM

Smaller data blocks reduce compression ratio
OS interrupt overhead matters

NVM’s Durability Constraint

e Admission control to NVM cache

o Lower write traffic to NVM

o Higher hit rate of NVM block cache

LRU to Simulate NVM
Block Cache

Lookup Table for NVM
Block Cache

FLASH

Satisfying NVM’s Read Bandwidth

e Smaller data block: from 16 KB to 4 KB
o Leadsto4xlargerindexsize
o Lower hit rate of block cache
o Inefficient compression ratio of data block
e Partitioning the database index
o Overall read bandwidth <2.2 GBps
o Comparable hit rate of block cache
| Top-Level Index |
Non-Partitioned index block
RISBEBEBEBBEBOOOOOO0L llndex Partltlon] |lndex Partltlon] | Index Partltlonl

Figure 12: Non-partitioned and paritioned index structures.
The partitioned scheme uses a top-level index, which points
to lower-level indices.

Satisfying NVM’s Read Bandwidth

e Aligning data blocks with device pages
o Overall bandwidth ~1.25 GBps
o Lower P99 latency

Blocks are unaligned with NVM pages:
Block Block Block Block Block Block

NVM Page NVM Page NVM Page NVM Page NVM Page

Blocks are aligned with NVM pages:
Block E Block E Block @ Block Block

NVM Page NVM Page NVM Page NVM Page NVM Page

Figure 14: An illustration of blocks that are unaligned with
the NVM pages, and of blocks that are aligned with the NVM

pages.

Problem on Database Size @RocksDB

e Smaller data blocks have inefficient compression ratio => larger DB size
O Data blocks are compressed by default
O Do compress block by block

e Sol: Use uniformly sampled dictionary SST by SST

Interrupt Overhead Matters

Polling instead of interrupt
Hybrid polling

Dynamic polling

=>Less CPU I/0 Wait

Block /0 Device Sched Sleep Sched Block I/0
Call Stack Driver In Out = Stack
IRQ
(a) The I/O latency when using interrupts
Block I/O | Device Block 1/0 e
Call | stack Driver Poliing Stack Latency Gain

T

Device Execution

(b) The I/0 latency when using polling

System Block I/O

Call | stack

Device
Driver

Sched
in

Device Execution

(c) The I/O latency when using hybrid polling

e
[[11]

Figure 20: Diagrams of the I/O latencies as perceived by the
application, using interrupts, polling, and hybrid polling.

Evaluation

e Configuration
o MyRocks (96 GB DRAM Cache)
o MyRocks (16 GB DRAM Cache)
o MyNVM (16 GB DRAM Cache + 140 GB NVM Cache)
o Single instance each

e Workload:

o Traces from DB serving the “social graph” data at Facebook
® Metrics:

o Overall Mean & P99 Latency

o Queries-per-Second or QPS
o CPU Consumption & /0 Wait

Mean & P99 Latency

1000
900
800 A YTTTTMAA AN
700

600

e WWM}\.
400 RTINS AN AN N0,
300
200
100

0

Average Latency (us)

Time

=—=MyRocks with high DRAM =—=MyRocks withlow DRAM =—MyNVM

Figure 22: Mean latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
and MyNVM with 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.

8000
7000

5000
4000
3000 M
2000

1000
0

P99 Latency (us)

Time

———=MyRocks with high DRAM ====MyRocks with low DRAM ====MyNVM

Figure 23: P99 latencies of MyRocks with 96 GB of DRAM
cache, compared to MyRocks with 16 GB of DRAM cache,
and MyNVM with 16 GB of DRAM cache and 140GB of NVM,
over a time period of 24 hours.

Queries-per-Second or QPS

r
1
B — e 25,000 30,000
50% - Lo 20,000 2 2 25000 g %
2 409 . ST g8 i /
5 40% | i 15,000 2 % g é 20,000 G /
F | 1 @ b7 C = i : o
: 30% . o0 = £ % 2 15,000 i o /
2 20% Lo T 5e £ & 10,000 /
I 3 g2
10% T N0 & 5000 /
o
0% I 1 0 0 SN0 £/ %
0 50 100 1 150 200 MyRocks (96GB MyRocks (16GB MyNVM (16GB
NVM Siz DRAM Cache) DRAM Cache) DRAM + 140GB
—Hitrate ***Queries Per Second NVM Caches)
Figure 24: NVM hit rate and QPS in MyNVM as a function of Figure 25: Queries per second (QPS) for different cache sizes

NVM size. in MyRocks, compared with MyNVM.

CPU Consumption & 1/O Wait

35% 10%
30% M /\——A
v 8%
c 25% g
2 2 6%
g 20% m ;o
2150/0 § 4% M
ﬁ_
& 10% 9. 5%
5%
0% :
0% . Time
Time
=—=MyRocks with high DRAM =—=MyRocks with low DRAM =—=MyNVM

=—=MyRocks with high DRAM ====MyRocks with low DRAM ====MyNVM

Figure 27: I/O-Wait percentage over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.

Figure 26: CPU consumption over 24 hours, of MyRocks
with 96 GB of DRAM cache, compared to MyRocks with
16 GB of DRAM cache, and MyNVM with 16 GB of DRAM
cache and 140 GB of NVM, over a time period of 24 hours.

Conclusions

e Challenges using NVM as DB cache
o Limited RW bandwidth / latency
o Smaller data blocks reduce compression ratio
o Limited write durability
o Interrupt overhead matters
e Solutions
o Partitioning index
Aligning blocks with physical NVM pages
Utilizing dictionary compression
Admission control to NVM
Hybrid polling
e Evaluation
o Maintaining comparable performance with 6x less DRAM by leveraging NVM

O O O O

Thanks

