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Motivation

● Modern KV stores consume much DRAM as cache
● TCO of data center increases

○ Since mismatch between DRAM’s bit supply and demand

● An NVM block device
○ offers 10x faster reads than flash
○ has 5x better write durability than flash
○ has no write amplification and no RW interference than flash
○ 4x cheaper than DRAM
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Goal: Use NVM to reduce DRAM footprint of MyRocks, while   
maintaining comparable performance.



Architecture of MyNVM
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Challenges using NVM as Block Cache

● Limited write durability
● RW latency: more than 100x slower than DRAM
● RW bandwidth: 34x slower than DRAM
● Smaller data blocks reduce compression ratio
● OS interrupt overhead matters



NVM’s Durability Constraint

● Admission control to NVM cache
○ Lower write traffic to NVM
○ Higher hit rate of NVM block cache
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Satisfying NVM’s Read Bandwidth

● Smaller data block: from 16 KB to 4 KB
○ Leads to 4x larger index size
○ Lower hit rate of block cache
○ Inefficient compression ratio of data block

● Partitioning the database index
○ Overall read bandwidth < 2.2 GBps
○ Comparable hit rate of block cache



Satisfying NVM’s Read Bandwidth

● Aligning data blocks with device pages
○ Overall bandwidth ~1.25 GBps
○ Lower P99 latency



Problem on Database Size @RocksDB

● Smaller data blocks have inefficient compression ratio => larger DB size
○ Data blocks are compressed by default

○ Do compress block by block

● Sol: Use uniformly sampled dictionary SST by SST



Interrupt Overhead Matters

● Polling instead of interrupt
● Hybrid polling
● Dynamic polling
● => Less CPU I/O Wait



Evaluation

● Configuration
○ MyRocks (96 GB DRAM Cache) 
○ MyRocks (16 GB DRAM Cache)
○ MyNVM    (16 GB DRAM Cache + 140 GB NVM Cache)
○ Single instance each

● Workload:
○ Traces from DB serving the “social graph” data at Facebook

● Metrics:
○ Overall Mean & P99 Latency
○ Queries-per-Second or QPS
○ CPU Consumption & I/O Wait



Mean & P99 Latency
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CPU Consumption & I/O Wait



Conclusions

● Challenges using NVM as DB cache
○ Limited RW bandwidth / latency
○ Smaller data blocks reduce compression ratio
○ Limited write durability
○ Interrupt overhead matters

● Solutions
○ Partitioning index
○ Aligning blocks with physical NVM pages
○ Utilizing dictionary compression
○ Admission control to NVM
○ Hybrid polling

● Evaluation
○ Maintaining comparable performance with 6x less DRAM by leveraging NVM
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