
Reducing DRAM Footprint with NVM
in Facebook

Presented by: Zhiqiang He

Outline

● Background
● Motivation and Goal
● Challenges
● Design and Implementation
● Evaluation
● Conclusions

Background

Block
Cache MemTables

Database
(SST files) Log

DRAM

FLASH

The Architecture of RocksDB

Data Block
1 ... Data Block

N
Filter
Block

Index
Block

The Format of a Sorted String Table (SST)

Simplized RW process in LSM KV Store

Motivation

● Modern KV stores consume much DRAM as cache
● TCO of data center increases

○ Since mismatch between DRAM’s bit supply and demand

● An NVM block device
○ offers 10x faster reads than flash
○ has 5x better write durability than flash
○ has no write amplification and no RW interference than flash
○ 4x cheaper than DRAM

ns us ms

higher latency

DRAM

Byte-addressable NVM NVM as block dev.

SSD

Goal: Use NVM to reduce DRAM footprint of MyRocks, while
maintaining comparable performance.

Architecture of MyNVM

Block
Cache MemTables

Database
(SST files) Log

DRAM

FLASH

2nd Level Block CacheNVM

Block
Cache MemTables

Database
(SST files) Log

DRAM

FLASH

Primary RocksDB Improved RocksDB

Challenges using NVM as Block Cache

● Limited write durability
● RW latency: more than 100x slower than DRAM
● RW bandwidth: 34x slower than DRAM
● Smaller data blocks reduce compression ratio
● OS interrupt overhead matters

NVM’s Durability Constraint

● Admission control to NVM cache
○ Lower write traffic to NVM
○ Higher hit rate of NVM block cache

 Blocks

DRAM

FLASH

Filtered Block CacheNVM

LRU to Simulate NVM
Block Cache

Lookup Table for NVM
Block Cache

Block
Cache

Satisfying NVM’s Read Bandwidth

● Smaller data block: from 16 KB to 4 KB
○ Leads to 4x larger index size
○ Lower hit rate of block cache
○ Inefficient compression ratio of data block

● Partitioning the database index
○ Overall read bandwidth < 2.2 GBps
○ Comparable hit rate of block cache

Satisfying NVM’s Read Bandwidth

● Aligning data blocks with device pages
○ Overall bandwidth ~1.25 GBps
○ Lower P99 latency

Problem on Database Size @RocksDB

● Smaller data blocks have inefficient compression ratio => larger DB size
○ Data blocks are compressed by default

○ Do compress block by block

● Sol: Use uniformly sampled dictionary SST by SST

Interrupt Overhead Matters

● Polling instead of interrupt
● Hybrid polling
● Dynamic polling
● => Less CPU I/O Wait

Evaluation

● Configuration
○ MyRocks (96 GB DRAM Cache)
○ MyRocks (16 GB DRAM Cache)
○ MyNVM (16 GB DRAM Cache + 140 GB NVM Cache)
○ Single instance each

● Workload:
○ Traces from DB serving the “social graph” data at Facebook

● Metrics:
○ Overall Mean & P99 Latency
○ Queries-per-Second or QPS
○ CPU Consumption & I/O Wait

Mean & P99 Latency

Queries-per-Second or QPS

CPU Consumption & I/O Wait

Conclusions

● Challenges using NVM as DB cache
○ Limited RW bandwidth / latency
○ Smaller data blocks reduce compression ratio
○ Limited write durability
○ Interrupt overhead matters

● Solutions
○ Partitioning index
○ Aligning blocks with physical NVM pages
○ Utilizing dictionary compression
○ Admission control to NVM
○ Hybrid polling

● Evaluation
○ Maintaining comparable performance with 6x less DRAM by leveraging NVM

Thanks

