USTC,CHINA

éé ADSLAB

Scale and Performance in a
Filesystem Semi-Microkernel

FH. FFI5

Outline

* Background
* uFS Design
* Evaluation
* Conclusion

2022/1/5

4

W

USTC, CHINA

ADSLAB

Outline

* Background
* uFS Design
* Evaluation

e Conclusion

2022/1/5

USTC,CHINA

ADSLAB

/ UsSTC, CHINA

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us

Application

1

User space

NFS | ext2 | ext3 | ext4

Page cache
Kernel space Generic block

I/0 scheduler

Block device driver

i} 10 us

Block device (Optane 4800x)

Linux I/O Stack
2022/1/5 4

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Libraries directly access the device user space

.) . : App App
Strata(SOSP-17), SplitFS(SOSP-19) Lib.FS 1 [Lib-FS

g

kernel-FS

kernel space

2022/1/5 5

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Libraries directly access the device user space

.) . : App App
Strata(SOSP-17), SplitFS(SOSP-19) Lib.FS 1 [Lib-FS

g

kernel-FS

 Drawback:

* Complicate the device access isolation and sharing

kernel space

2022/1/5 6

Background = pADSLCAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Libraries directly access the device user space

: App App
. P-1 1itF P-1
Strata(SOSP-17), SplitFS(SOSP-19) Lib.FS 1 1_ Lib-FS

g

kernel-FS

 Drawback:

* Complicate the device access isolation and sharing

e Conclusion

* Centralized 10 multiplexing

* Simpler isolation and sharing kernel space

2022/1/5 7

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device
* DevFS(FAST-18), CrossFS(OSDI-20) user space

App App
Lib Lib

2/1/5 8

20

\®]

/ UsSTC, CHINA

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device

* DevFS(FAST-18), CrossFS(OSDI-20) user space
* Drawback: App App
« “Smarter-HW?” assumption Lib Lib

e Unknown HW constraints

Device + [

2022/1/5 9

Background = pADSLCAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device

* DevFS(FAST-18), CrossFS(OSDI-20) user space
* Drawback: App App
« “Smarter-HW?” assumption Lib Lib

e Unknown HW constraints

e Conclusion

* Realistic Assumption
* Ultra-fast Devices and NVMe protocol

2022/1/5 10

Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Possible solution:

e Semi-Microkernel

* Or “filesystem as a process”(HotStorage-19) user space kernel space
App App
Lib Lib
Other OS
y v Subsystems
FS

[\ ®)

0

\®]
[\

/1/5 11

Background = ADSLAB

e Semi-Microkernel

* An OS subsystem that runs as a user-level process
* Works in tandem with monolithic kernel

* Benefits of Semi-Microkernel

* Code velocity
* Quickly develop, modify, and deploy system software
* Application-level debugging and testing

* Performance
* Scale subsystem independently from applications

* Avoid extra kernel overhead

20

\®]

2/1/5 12

Background = ADSLAB

* Semi-Microkernel
* An OS subsystem that runs as a user-level process
* Works in tandem with monolithic kernel

* Prior semi-microkernel

* Focus on networking
* Snap(SOSP-19), TAS(Eurosys-19)

* Possible for storage now
* User-level device driver(SPDK)

2022/1/5 13

Background = pADSLAB

* Challenge A
 Base Performance random e LF.J: : | &

* Inter-process communication & device access I

Dev

2022/1/5 .

Background P e

* Challenge -
* Base Performance random e LI:: « H - ESI

* Inter-process communication & device access I

Dev

2022/1/5 .

USTC, CHINA

Background = ADSLAB

* Challenge R
* Base Performance random fead Lli): < ¥ | @
* Inter-process communication & device access I
Dev]

2022/1/5 16

Background = ADSLAB

* Challenge "
* Base Performance random fead LF.J: . ¥ . E,S
* Inter-process communication & device access I
* Scale up and down Dev.

* Scalability

2022/1/5 17

Background = pADSLAB

* Challenge
App JiN
 Base Performance Random Read | FS
1 gECECEC
* Inter-process communication & device access I
* Scale up and down Dev

* Scalability

2022/1/5 18

Background = ADSLAB

* Challenge ap | p
Random Read aia
 Base Performance TN T lib ——s IFEIS
* Inter-process communication & device access I Lo\
A :
* Scale up and down Append PP J Dev
Lib
* Scalability I
* Dynamic and heterogeneous application demands App
Scan
Lib

2022/1/5 19

Background = pADSLCAB
* Challenge ap | p
 Base Performance Random Read | 1 T EIS
* Inter-process communication & device access I H
* Scale up and down Append Dev

* Scalability

* Dynamic and heterogeneous application demands

Scan

2022/1/5 20

USTC, CHINA

Background = ADSLAB

* Challenge App o
Random Read AL
* Base Performance Lib «—
* Inter-process communication & device access
A
* Scale up and down Append LI‘DbP p
|
* Scalability
* Dynamic and heterogeneous application demands App
 Invest just-right amount of CPU >ean Lib
App
Burst Hotkeys
Lib

2022/1/5 21

USTC, CHINA
Background = pADSLCAB
* Challenge A | f
* Base Performance) TS of e
* Inter-process communication & device access
* Scale up and down Append T_':bp J
* Scalability
* Dynamic and heterogeneous application demands App
* Invest just-right amount of CPU >ean Lib
Burst Hotkeys APP
Lib

2022/1/5 22

Background = ADSLAB

) Challenge Random Read AI.)P FS
* Base Performance Lib < A i i ofa:
 Inter-process communication & device access Avp “
* Scale up and down Append |/
* Scalability
* Dynamic and heterogeneous application demands App

Scan

* Invest just-right amount of CPU Lib

2022/1/5 23

Background = ADSLAB

) Challenge Random Read AI.)P FS
* Base Performance Lib < A dE
 Inter-process communication & device access Avp “
* Scale up and down Append |/
* Scalability
* Dynamic and heterogeneous application demands App

Scan

* Invest just-right amount of CPU Lib

2022/1/5 24

Outline

* Background
* uFS Design
* Evaluation

 Concusion

2022/1/5

USTC,CHINA

ADSLAB

25

/ UsSTC, CHINA

uFS Design = ADSLAB

* Single-Threaded uServer

* Multi-Threaded uServer

* Dynamic Load Management

* Employ Non-blocking Shared Structures Judiciously

2022/1/5 26

uFS Design ADSL AR

* Single-Threaded uServer

* Multi-Threaded uServer

* Dynamic Load Management

* Employ Non-blocking Shared Structures Judiciously

2022/1/5 27

uFS Design PR
* Single-Threaded uServer App-1 AP
Fd [1]2]3]4]5] isl9!vFd uLib
FH [FL[F2[F3] - -

rl I—‘y _ threadl - - thread2 _
File Cache @ | @ @
&g &

H
:'
init() exit() gb O@

-
-
-~
-
-
-
-~
~o
-

YY

OS Kernel workerg \
@ App-Wi MsgRing \
@ Shared Mem o \
Qpair =
&\N Pinned Mem Devices
uServer

2022/1/5 28

ub s Hesign _EADSTCAB

* Single-Threaded uServer App-1 App-2
PICY uLib
* uServer Fd [1]213]4]5] ;8i9}vFd
FH |f1|f2|f3| .. | .
* Directly accesses the device via SPDK - 5 _ threadl _ thread2 _

* Non-blocking polling & &ile Cache | @ 1 @

* Pinned memory as block buffer cache

O
:
-
N

init() exit() &

OS Kernel workerg
@ App-Wi MsgRing \\
@ Shared Mem N \
\\N Pinned Mem Qpalr =
‘

evices
uServer

2022/1/5 29

uFS Design / usTC, CHiNa
& _Z=ADSLAB
* Single-Threaded uServer App-1 App-2
* uLib Fd [1[2[3]4]5] 8o} vrd ulib
FH [f1[f2[f3]|.. [..
* POSIX-API r’ |—¢, _ threadl _ thread2 _

@

* App-integrated file cache (lease-based) | | I !File Cache

* Open-lease management

!
/ 1
7]
init() exit() & ﬁ
OS Kernel workerg \
@ App-Wi MsgRing \\
@ Shared Mem Qpai] \
allr mm
N Pinned Mem DeViCS —
uServer

2022/1/5 30

Ur> Design _EnaDECRB

* Single-Threaded uServer App-1 App-2
. T'T":v Lib
e The OS kernel only involves for Fd L1315 P] 18191vRd -
initial authentication (fs_init) FH[f1]f2[f3].. |

r’ |—¢, _ threadl _ threadz _
Il
I
& &ileCache l:] ¥ l '

\ ,I,
init() exit() &

-
-
-~
-
-
-
-~
-
-

O
:
-
N

OS Kernel workerg
@ App-Wi MsgRing \\
@ Shared Mem Qpai] \
pair m
N Pinned Mem Devices
uServer

2022/1/5 31

il s £EADSEAS

* Single-Threaded uServer App-1 App-2
. . r2Tgly uLib
» Inter-process communication Fd [LIZD1A15] 1819 vFd
NMEEENE
e Control: shared-mem IPC W_' '—\;, _ threadl thread2

* Cache-line-size message &] &ile Cache | @ i @
I
|

| | 4
init() exit() ‘ & 0@ \
OS Kernel workerg \
@ App-Wi MsgRing \\
@ Shared Mem Q) = \
pair m
N Pinned Mem Devices
uServer

2022/1/5 32

° ‘ UsSTC, CHINA
uFS Design M= pADSLAB

* Single-Threaded uServer App-1 App-2
. L. Tty uLib
» Inter-process communication Fd [LIZD1A15] 1819 vFd
NMEEENE
e Control: shared-mem IPC W_' '—\;, “threadl threadZ

* Cache-line-size message &] &ile Cache || @ i @
I
|

 Data: customized malloc in uLib

* uLib shares pages with uServer ——
init() | [exit() ‘ go O@ \
Kernel

OS Kerne workerg N\
@ App-Wi MsgRing \\
@ Shared Mem] \

Qpair =
A\ Pinned M .
Wy rhneaTiem Devices
uServer

2022/1/5 33

uFS Design ADSL AR

* Single-Threaded uServer

* Multi-Threaded uServer

* Dynamic Load Management

* Employ Non-blocking Shared Structures Judiciously

2022/1/5 3

uFS Design = ADSLCAB

e Multi-Threaded uServer App-1 App-2
T uLib
e Utilize the full bandwidth of current || FdEl231415] 18:9:vFd
I/O deViceS FH EIACCLETE threadl thread2

T ' ” .
 More computation resource &] File Cache | @ | @ I @

L’
4 / /’ 4
:;g"‘ > -
~ -,

YY
’

OS Kernel Woé ::\Z\ZI)E__!V; '
@ App-Wi MsgRing \\\\\

@ Shared Mem @

R\ N Pinned Mem =

uServer

2022/1/5 35

USTC, CHINA

uFS Design _EE P

e Multi-Threaded uServer App-1 App-2
. » . PICHY Lib
e Scalable by design: sharing nothing Eﬂ TeBIAIb] 1819;vFd o
f1{f2|f3]|.. | ..
* Each worker has several private data 5 threadl _ _ thread?

structure | | | !File Cache

* Device requests qpair

init() exit()

YY

-
-
S~

Wg)é _\7\713 W ’ S

|
@ App-Wi MsgRing
A\

OS Kernel

N Pinned Mem

uServer

2022/1/5 36

uFS Design

e Multi-Threaded uServer

* Scalable by design: sharing nothing

* Each worker has several private data
structure

* Device requests qpair

* Msg rings buffer per apps

2022/1/5

= ADSLAB

App-1 App-2

Fd |1]2

- —

=5 uLib

- |d P
W‘v.u_l
A

N [

FH|f1

4 88 @

threadl thread2

init() exit()

OS Kernel

@ App-Wi MsgRing
@ Shared Mem

m Pinned Mem

N

Devices

uServer

37

° ‘ UsSTC, CHINA
uFS Design M= pADSLAB

* Multi-Threaded uServer App-1 App-2
Y uLib
* Scalable by design: sharing nothing : TEIAIR] 1819; vFd
fl|f2|f3|..| ..
* Each worker has several private data i _ threadl _ threadz _

* Device requests qpair

 Msg rings buffer per apps) L AT
init() exit() égu a@:@
* Block buffer cache o, -0 T
b ,‘~ '/'
OS Kernel Wog(_ E ‘

structure &] &ineache | @ : @ | @
aals

YY
’
\
\
’
’
\

&\\g Pinned Mem

uServer

2022/1/5 38

/ UsSTC, CHINA

uFS Design = ADSLAB
e Multi-Threaded uServer

* Data parallelism for scalability

; i . hi
Shared-nothing architecture Runtime Inode Ownership
* Divide filesystem states and data into threads

* minimizes the sharing of in-memory data structures across cores

\

Employ Non-blocking Shared Structures Judiciously

20

\®]

2/1/5 39

ub s Hesign _EADSTCAB

e Multi-Threaded uServer WO W1 W2 W3

« Runtime Inode Ownership @ ©

* Each group of inodes is exclusively accessed by one worker

* No need for synchronization /2\?\
* Pre-assign data bitmap to each worker for data allocation
9000

O Directory Inode
© File Inode

2022/1/5 40

uFS Design ; é L e
e Multi-Threaded uServer WO W1 W W
« Runtime Inode Ownership @ ©

* Each group of inodes is exclusively accessed by one worker

* No need for synchronization

* Pre-assign data bitmap to each worker for data allocation %
e Asymmetric Workers (e le
‘ Primary(WO) Directory Inode
D File Inode

* Own and handles metadata workload (directory operations)

e (Coordinates with the workers
* Worker

* File operations

2022/1/5 41

Dynamic Load Management

/ UsSTC, CHINA

Z=ADSLAB

* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal

* Decides number of cores=—» Activate/Deactivate cores

* Worker invokes inode reassignment
* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

W0 W1 W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core
O Directory Inode
@ File Inode

LoadMng
+/- core
Rebalance

2022/1/5 42

Dynamic Load Management A ADSTAS

* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal
* Decides number of cores=—» Activate/Deactivate cores
* Worker invokes inode reassignment
* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

W0 W1 W2 W3 W4

LB: 50% => Wu @) Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
© File Inode

LoadMng
+/- core
Rebalanc

2022/1/5 43

/ UsSTC, CHINA

Dynamic Load Management S~ ADSLAB

* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal

* Decides number of cores=—» Activate/Deactivate cores
* Worker invokes inode reassignment

* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

which inodes
to migrate?

W0 WI1 W2 W3 W4

LB: 50% => w1 |

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
@ File Inode

LoadMng
+/- core
2022/1/5 Rebalanc

44

Dynamic Load Algorithms

/ UsTC, CHINA

= ADSLAB

* Load balancing

* Towards minimizing congestion on each core
* Core allocation

* Meets a per-core CPU utilization goal

* Answer the “what if” questions by algorithmically emulating the load
balancing results

* Load balancing as a black-box

 Whatif [add one core | no change | remove one core]

which inodes
to migrate?

W0 WI1 W2 W3 W4

LB: 50% => w1 |

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
N\ @ File Inode

LoadMng
+/- core
2022/1/5 Rebalanc

Employ Non-blocking Shared Structures]udicious/Lyﬁ= USTC, CHINA

ADSLAB
* Dentry Cache and Permission Checking
hashmap
 Rbcirsive HashMap - oom i poeeeesvnsevlaenens
: a :
* Only the primary worker can update and all can read “eeessTeseseescenes
* Leverage industrial-quality lock-free data structures

2022/1/5 “

Employ Non-blocking Shared Structures]udicious/b’= USTC, CHINA
_a

=ADSLAB

* Dentry Cache and Permission Checking

hashmap
 Rbcirsive HashMap - oom i poeeeesvnsevlaenens
. a .
* Only the primary worker can update and all can read WeTessTiesseeserees
* Leverage industrial-quality lock-free data structures b ﬂﬂ

DIR

* Global Logic Journal that allows maximal parallelism —

* Each worker can initialize journal transactions independently for owned inodes
* Negligible overhead added atomically allocate journal blocks

* Recording logic modification is lightweight

AN

Circular Buffer

* Minimal critical section when reserving journal blocks

G—

Tail (insert)

G—

Head (extract)

2022/1/5 47

Outline

* Background
* uFS Design
* Evaluation
* Conclusion

2022/1/5

USTC,CHINA

ADSLAB

48

Evaluation

/ UsSTC, CHINA

Z=ADSLAB

uFS offers good single-threaded base performance

uFS performs well as a multi-threaded micro-kernel

uFS dynamically scales to match demand

* Load Balancing Experiments

* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

atomically allocate journal blocks
Platform

* Intel Optane 905P SSD; Intel® Xeon® Gold 5218R CPU
e Linux 5.4, SPDK 18.04 Circular Buffer

G—

Tail (insert)

G—

Head (extract)

2022/1/5 49

Evaluation

/ UsSTC, CHINA

= ADSLAB

uFS offers good single-threaded base performance

uFS performs well as a multi-threaded micro-kernel

uFS dynamically scales to match demand

* Load Balancing Experiments

* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

atomically allocate journal blocks

AN

Circular Buffer

Platform
* Intel Optane 905P SSD; Intel® Xeon® Gold 5218R CPU
e Linux 5.4, SPDK 18.04

G—

Tail (insert)

G—

Head (extract)

2022/1/5 50

o o
o ©

o
N

o
‘O

o o oo

20O NMDdOO="ONMIO®D®=

Worker Effective CPU Utilization

o

-
o N
o 1

—
L)

o
I # I

= 9
e,

Core Allocation Experiments

>

——

17
0.81
0.6
0.41
0.21

USTC,CHINA

_ﬁADSLAB

» App Start
~ App Lower Load
® App Stop

10

12

0

{9
0.81
0.61
0.41

0.21

12

Each worker’s effective
CPU utilization reflects

=

10

12

0

13
0.81
0.6+
0.41
0.21

0

‘O

10

0.81
0.6
0.41
0.21

12 an app’s filesystem
demand

12

2022/1/5

2

10

12

13 Time (second)

51

Core Allocation Experiments

—
J

11

USTC,CHINA

_ﬁADSLAB

» App Start

s App Lower Load
® App Stop

Each worker’s effective
CPU utilization reflects

12 an app’s filesystem
demand

>
0.8 0.8 >
0.6 0.6-
c 0.4, 0.4
0.2 0.2
O
T Op 2 10 12 % 8 10 12
.! 1 1
= 0.8 0.8
el
= 0.6 0.6
20.4 0.4
0.2 0.2
(&)
@ Oo 2 10 12 0(_) 8 10
2 1 1
go.e- 0.8
0.6 0.6
=
Wl 0.41 0.4
= (0 0.2
o
{ 03 2 10 12 % 8 10 12
O 1] 17
= 03] 0.8
0.6- 0.6
0.4 0.4
0.24 0.2-
% 2 10 12 % 8 10

2022/1/5

13 Time (second)

52

1 ' USTC, CHINA
Core Allocation Experiments ADSL AR
11y 17 > » App Start
0.8 0.8
0.6 0.6 S App Lower Load
0.4~ 0.4
g 02f 0.2 ® App Stop
iﬁ Op 10 12 OQ 2 4 6 8 10 12
N |1 1
= 0.8/ 0.8/
)
= 0.6- 0.6
E 0.4- 0.4 Each worker’s effective
o %2 °'§‘ CPU utilization reflects
g .?Q 10 12 1(_) 2 4 6 8 10 12 an app’s ﬁlesystem
© 0.8 0.8 demand
Q6. |
£ 06 0.6
W 0.4 0.4
52(12- 0.2
3 (1)(_) 10 12 ?p 2 4 6 8 10 12
= 0.8 0.8
0.6 0.6
0.4 0.4-
0.2 0.2
% 10 12 % 2 4 6 8 10 ;2 Time (second)

2022/1/5

53

i ' USTC, CHINA
Core Allocation Experiments ADSLAB
1 11 > » App Start
0.8 0.8
0.6 0.6 ~ App Lower Load
0.4 - 0.4
So2; 0.2 S App Stop
iﬁ Op 2 4 6 10 12 Oo 2 4 6 8 10 12
N 1 ! >
= 0.8 0.8
e}
D 0.6 0.6
E 0.4 0.4 Each worker’s effective
O %2 I 0.2 CPU utilization reflects
.029 ?p 2 4 . 6 ' 10 12 ?p 2 4 . 6 8\ 10 12 an app’s filesystem
§ 0.8 0.8 demand
2 06 | 0.6
L 0.4 0.4
35 0.2 | — 0.2-
X 0 - - - - .0 - -
5 0) 4 6 10 120 5 4 6 8 10 12
= 038/ > 0.8 A
0.6 0.6
0.4 0.4
0.2 0.2
PA‘J-&_ .
% 2 4 6 ' 10 12 % 2 4 6 8 10 1> Time (second)

2022/1/5

54

Worker Effective CPU Utilization

o

Core Allocation Experiments ADST A

o > o > App Start
0.81
0.6 ~ App Lower Load

- =S il 0.4

0.21

v

e
ol ol ol
3
]

®© App Stop

o
o N
o

©cooo
A OO O =
o
(o))

0.4 Each worker’s effective
| 0.2 CPU utilization reflects
' ' ' 10 12 20 2 4 6 8 10 12 an app’s filesystem

0.81 - demand

o
N
N
(o)}
(o0}

¢ © o oo -
0= 0 N PO OOO-~= 0N
o
N

12

o
N
IS
(o)]
o 0
-
o
-
N
o
N
IS
(o))
(o0}
-
o

° o
s o
o

(o)}

o
o N
o
o N

5 4 6 8 0o~ 12 % 5 i 6 8 1o~ 12 1ime (second)

2022/1/5 55

o

Core Allocation Experiments

/ USTC, CHINA
17 1] » App Start
08! * ® s > o
0.61 0.6 s App Lower Load
0.4m e e e —— 0.4
S o2 “L___| 0.2 ® App Stop
'g"?; % 2 4 6 8 10 12 % 2 4 6 8 10 12
7))
o
| -
Q
(&
[V.
o
S =S
| -
()
e .
O
2. 3 4 5 6 7 8 9 10 11 12 (sec)
one worker per app — dynamic core allocation
5 o 2 4 6 8 10 12 p 2 4 6 8 10 12
= 038 - | = i > S
0.6 | 0.6
0.4 | 0.4
0.2 T | 0.2
i ankhe -
% 2 4 6 5§ 10 12 % 2 4 6 8 10 12 Time (second)
2022/1/5

56

Core Allocation Experiments 4= ADELAR

8 workloads: each changes one factor by N steps along the time
* Factor example: think-time, data screw degree, request size
* uFS delivers between 91% to 98% throughput of Max
e uFS controls number of cores as needed

x —> Max: allocate one worker per app Max: uses 6 cores

= 6 t

£ @

= ()

> = 4.8

2 Q 4.7

S O 46 4.3

S D 3.6

0 3.6

= H* 3.3[3.4
()

— o 2.4

D ® 2.4

@ © 2.2

N 212

N > 1.

© <

£

S 0

z a0 a1 b-0 b-1 c0 c-1 d-0 d-1 a0 a1 b-0 b-1 c0 c1 d-0 d-1

Each workload contains 6 clients

2022/1/5 57

Throughput

—
w
o =
T —

/ UsSTC, CHINA

LevelDB: uFS with Real Apps = ADSLAB

fillseq fillrand ycsb-a ycsb-b M ycsb-c ycsb-d 00K ycsb-e ycsb-f
....................... } } } . -
........... G..........0..........G..........G..........G..........O..........G..........pp
12345678910 12345678910 123_45678910 12345678910 12345678910 12345678910 12345678910 123456_7891(_)
write-only write-only write-heavy read-heavy read-only read-latest range-heavy read-modify-write
— uFS - ext4

 uFS can scale much better than ext4
 uFS will allocate different number of cores for various workloads

* Giving more cores (>10) to ext4 does not help much for performance

2022/1/5 58

—

Throughput

USTC, CHINA

ADSLAB

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 123456780910
write-only write-only write-heavy read-heavy read-only read-latest range-heavy read-modify-write

— uFS - ext4

 uFS can scale much better than ext4
e uFS will allocate different number of cores for various workloads
* Giving more cores (>10) to ext4 does not help much for performance

2022/1/5 59

Throughput

—
w
o <
T—

USTC, CHINA

LevelDB: uFS with Real Apps = pADSLCAB

£3 Number of cores (when #app=10)

ycsb-e

fillseq M fillrand ™ ycsb-a M ycsb-b M ycsb-c oM ycsb-d 500K

12345678910 12345678910 12345678910

12345678910 12345678910 12345678910 12345678910 12345678910 . .
read-modify-write

write-only write-only write-heavy read-heavy read-only read-latest range-heavy
— uFS - ext4

 uFS can scale much better than ext4
 uFS will allocate different number of cores for various workloads

* Giving more cores (>10) to ext4 does not help much for performance

2022/1/5 60

Outline

* Background
* uFS Design
* Evaluation
* Conclusion

2022/1/5

USTC,CHINA

ADSLAB

61

/ UsSTC, CHINA

Conclusion S=ADSLAB

* uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

 Scales independently from the applications and dynamically matches
demand

* Filesystem Semi-Microkernel Approach
 Performs and scales well under various workloads

* Has all the benefits of user-level development

2022/1/5 62

/ UsSTC, CHINA

Conclusion S=ADSLAB

* uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

 Scales independently from the applications and dynamically matches
demand

* Filesystem Semi-Microkernel Approach
 Performs and scales well under various workloads

* Has all the benefits of user-level development

rmy¥y_. ____¥_ __ _ __»§

2022/1/5 63

