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Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us

Application

1

User space

NFS | ext2 | ext3 | ext4

Page cache
Kernel space Generic block

I/0 scheduler

Block device driver

i} 10 us

Block device (Optane 4800x)

Linux I/O Stack
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Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Libraries directly access the device user space
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Strata(SOSP-17), SplitFS(SOSP-19) Lib.FS 1 [ Lib-FS

g

kernel-FS
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Background = pADSLCAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Libraries directly access the device user space

: App App
. P-1 1itF P-1
Strata(SOSP-17), SplitFS(SOSP-19) Lib.FS 1 1_ Lib-FS

g

kernel-FS

 Drawback:

* Complicate the device access isolation and sharing

e Conclusion

* Centralized 10 multiplexing

* Simpler isolation and sharing kernel space
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Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device
* DevFS(FAST-18), CrossFS(OSDI-20) user space

App App
Lib Lib
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Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device

* DevFS(FAST-18), CrossFS(OSDI-20) user space
* Drawback: App App
« “Smarter-HW?” assumption Lib Lib

e Unknown HW constraints

Device + [
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Background = pADSLCAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Existing Solutions:

* Move Filesystems to the device

* DevFS(FAST-18), CrossFS(OSDI-20) user space
* Drawback: App App
« “Smarter-HW?” assumption Lib Lib

e Unknown HW constraints

e Conclusion

* Realistic Assumption
* Ultra-fast Devices and NVMe protocol
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Background = pADSLAR
* HW is Fast — but SW Appears Slow

* notable overhead to trapping in and out of the kernel

* Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us
* Possible solution:

e Semi-Microkernel

* Or “filesystem as a process”(HotStorage-19) user space kernel space
App App
Lib Lib
Other OS
y v Subsystems
FS

[\ ®)

0

\®]
[\
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Background = ADSLAB

e Semi-Microkernel

* An OS subsystem that runs as a user-level process
* Works in tandem with monolithic kernel

* Benefits of Semi-Microkernel

* Code velocity
* Quickly develop, modify, and deploy system software
* Application-level debugging and testing

* Performance
* Scale subsystem independently from applications

* Avoid extra kernel overhead

20
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Background = ADSLAB

* Semi-Microkernel
* An OS subsystem that runs as a user-level process
* Works in tandem with monolithic kernel

* Prior semi-microkernel

* Focus on networking
* Snap(SOSP-19), TAS(Eurosys-19)

* Possible for storage now
* User-level device driver(SPDK)
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* Challenge "
* Base Performance random fead LF.J: . ¥ . E,S
* Inter-process communication & device access I
* Scale up and down Dev.

* Scalability
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* Challenge App o
Random Read AL
* Base Performance Lib «—
* Inter-process communication & device access
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* Scale up and down Append LI‘DbP p
|
* Scalability
* Dynamic and heterogeneous application demands App
 Invest just-right amount of CPU >ean Lib
App
Burst Hotkeys
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) Challenge Random Read AI.)P FS
* Base Performance Lib < A i i ofa:
 Inter-process communication & device access Avp “
* Scale up and down Append |/
* Scalability
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* Base Performance Lib < A dE
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uFS Design = ADSLAB

* Single-Threaded uServer

* Multi-Threaded uServer

* Dynamic Load Management

* Employ Non-blocking Shared Structures Judiciously
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* Single-Threaded uServer App-1 App-2
PICY uLib
* uServer Fd [1]213]4]5] ;8i9}vFd
FH |f1|f2|f3| .. | .
* Directly accesses the device via SPDK - 5 _ threadl _ thread2 _

* Non-blocking polling & &ile Cache | @ 1 @

* Pinned memory as block buffer cache
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init() exit() &
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@ App-Wi MsgRing \\
@ Shared Mem N \
\\N Pinned Mem Qpalr =
‘

evices
uServer
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* Single-Threaded uServer App-1 App-2
* uLib Fd [1[2[3]4]5] 8o} vrd ulib
FH [f1[f2[f3]|.. [ ..
* POSIX-API r’ |—¢, _ threadl _ thread2 _

@

* App-integrated file cache (lease-based) | | I !File Cache

* Open-lease management
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* Single-Threaded uServer App-1 App-2
. T'T":v Lib
e The OS kernel only involves for Fd L1315 P] 18191vRd -
initial authentication (fs_init) FH[f1]f2[f3].. |
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* Single-Threaded uServer App-1 App-2
. . r2Tgly uLib
» Inter-process communication Fd [LIZD1A15] 1819 vFd
NMEEENE
e Control: shared-mem IPC W_' '—\;, _ threadl  thread2

* Cache-line-size message &] &ile Cache | @ i @
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|

| | 4
init() exit() ‘ & 0@ \
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@ App-Wi MsgRing \\
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* Single-Threaded uServer App-1 App-2
. L. Tty uLib
» Inter-process communication Fd [LIZD1A15] 1819 vFd
NMEEENE
e Control: shared-mem IPC W_' '—\;, “threadl  threadZ

* Cache-line-size message &] &ile Cache || @ i @
I
|

 Data: customized malloc in uLib

* uLib shares pages with uServer ——
init() | [ exit() ‘ go O@ \
Kernel
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@ App-Wi MsgRing \\
@ Shared Mem ] \

Qpair =
A\  Pinned M .
Wy rhneaTiem Devices
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* Single-Threaded uServer

* Multi-Threaded uServer

* Dynamic Load Management

* Employ Non-blocking Shared Structures Judiciously

2022/1/5 3



uFS Design = ADSLCAB

e Multi-Threaded uServer App-1 App-2
T uLib
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e Multi-Threaded uServer App-1 App-2
. » . PICHY Lib
e Scalable by design: sharing nothing Eﬂ TeBIAIb] 1819;vFd o
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uFS Design

e Multi-Threaded uServer

* Scalable by design: sharing nothing

* Each worker has several private data
structure

* Device requests qpair

* Msg rings buffer per apps

2022/1/5
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* Multi-Threaded uServer App-1 App-2
Y uLib
* Scalable by design: sharing nothing : TEIAIR] 1819; vFd
fl|f2|f3|..| ..
* Each worker has several private data i _ threadl _ threadz _

* Device requests qpair
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uFS Design = ADSLAB
e Multi-Threaded uServer

* Data parallelism for scalability

; i . hi
Shared-nothing architecture Runtime Inode Ownership
* Divide filesystem states and data into threads

* minimizes the sharing of in-memory data structures across cores

\

Employ Non-blocking Shared Structures Judiciously

20

\®]
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e Multi-Threaded uServer WO W1 W2 W3

« Runtime Inode Ownership @ ©

* Each group of inodes is exclusively accessed by one worker

* No need for synchronization /2\?\
* Pre-assign data bitmap to each worker for data allocation
9000

O Directory Inode
© File Inode
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uFS Design ; é L e
e Multi-Threaded uServer WO W1 W W
« Runtime Inode Ownership @ ©

* Each group of inodes is exclusively accessed by one worker

* No need for synchronization

* Pre-assign data bitmap to each worker for data allocation %
e Asymmetric Workers (e le
‘ Primary(WO) Directory Inode
D File Inode

* Own and handles metadata workload (directory operations)

e (Coordinates with the workers
* Worker

* File operations
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* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal

* Decides number of cores=—» Activate/Deactivate cores

* Worker invokes inode reassignment
* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

W0 W1 W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core
O Directory Inode
@ File Inode

LoadMng
+/- core
Rebalance
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Dynamic Load Management A ADSTAS

* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal
* Decides number of cores=—» Activate/Deactivate cores
* Worker invokes inode reassignment
* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

W0 W1 W2 W3 W4

LB: 50% => Wu @) Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
© File Inode

LoadMng
+/- core
Rebalanc
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Dynamic Load Management S~ ADSLAB

* Separate load managing thread (LoadMng)
 Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] =—» Informs each worker the desired goal

* Decides number of cores=—» Activate/Deactivate cores
* Worker invokes inode reassignment

* Tracks per-inode stats

* Given [load goal], decides which groups of inodes to be re-assigned

which inodes
to migrate?

W0 WI1 W2 W3 W4

LB: 50% => w1 |

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
@ File Inode

LoadMng
+/- core
2022/1/5 Rebalanc
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Dynamic Load Algorithms
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* Load balancing

* Towards minimizing congestion on each core
* Core allocation

* Meets a per-core CPU utilization goal

* Answer the “what if” questions by algorithmically emulating the load
balancing results

* Load balancing as a black-box

 Whatif [add one core | no change | remove one core]

which inodes
to migrate?

W0 WI1 W2 W3 W4

LB: 50% => w1 |

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
N\ @ File Inode

LoadMng
+/- core
2022/1/5 Rebalanc




Employ Non-blocking Shared Structures ]udicious/Lyﬁ= USTC, CHINA

ADSLAB
* Dentry Cache and Permission Checking
hashmap
 Rbcirsive HashMap - oom i poeeeesvnsevlaenens
: a :
* Only the primary worker can update and all can read “eeessTeseseescenes
* Leverage industrial-quality lock-free data structures
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Employ Non-blocking Shared Structures ]udicious/b’= USTC, CHINA
_a
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* Dentry Cache and Permission Checking

hashmap
 Rbcirsive HashMap - oom i poeeeesvnsevlaenens
. a .
* Only the primary worker can update and all can read WeTessTiesseeserees
* Leverage industrial-quality lock-free data structures b ﬂﬂ

DIR

* Global Logic Journal that allows maximal parallelism —

* Each worker can initialize journal transactions independently for owned inodes
* Negligible overhead added atomically allocate journal blocks

* Recording logic modification is lightweight

AN

Circular Buffer

* Minimal critical section when reserving journal blocks

G—

Tail (insert)

G—

Head (extract)

2022/1/5 47



Outline

* Background
* uFS Design
* Evaluation
* Conclusion

2022/1/5

USTC,CHINA

ADSLAB

48



Evaluation
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uFS offers good single-threaded base performance

uFS performs well as a multi-threaded micro-kernel

uFS dynamically scales to match demand

* Load Balancing Experiments

* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

atomically allocate journal blocks
Platform

* Intel Optane 905P SSD; Intel® Xeon® Gold 5218R CPU
e Linux 5.4, SPDK 18.04 Circular Buffer

G—

Tail (insert)

G—

Head (extract)
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uFS offers good single-threaded base performance

uFS performs well as a multi-threaded micro-kernel

uFS dynamically scales to match demand

* Load Balancing Experiments

* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

atomically allocate journal blocks

AN

Circular Buffer

Platform
* Intel Optane 905P SSD; Intel® Xeon® Gold 5218R CPU
e Linux 5.4, SPDK 18.04

G—

Tail (insert)

G—

Head (extract)
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» App Start
~  App Lower Load
® App Stop
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Core Allocation Experiments
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Core Allocation Experiments ADSL AR
11y 17 > » App Start
0.8 0.8
0.6 0.6 S App Lower Load
0.4~ 0.4
g 02f 0.2 ® App Stop
iﬁ Op 10 12 OQ 2 4 6 8 10 12
N |1 1
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Q6. |
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Core Allocation Experiments

/ USTC, CHINA
17 1] » App Start
08! * ® s > o
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Core Allocation Experiments 4= ADELAR

8 workloads: each changes one factor by N steps along the time
* Factor example: think-time, data screw degree, request size
* uFS delivers between 91% to 98% throughput of Max
e uFS controls number of cores as needed

x —> Max: allocate one worker per app Max: uses 6 cores

= 6 t

£ @

= ()

> = 4.8

2 Q 4.7

S O 46 4.3

S D 3.6

0 3.6

= H* 3.3[3.4
()

— o 2.4

D ® 2.4

@ © 2.2

N 212

N > 1.

© <

£

S 0

z a0 a1 b-0 b-1 c0 c-1 d-0 d-1 a0 a1 b-0 b-1 c0 c1 d-0 d-1

Each workload contains 6 clients
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LevelDB: uFS with Real Apps = ADSLAB

fillseq fillrand ycsb-a ycsb-b M ycsb-c ycsb-d 00K ycsb-e ycsb-f
....................... } } } . -
........... G..........0..........G..........G..........G..........O..........G..........pp
12345678910 12345678910 123_45678910 12345678910 12345678910 12345678910 12345678910 123456_7891(_)
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Conclusion S=ADSLAB

* uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

 Scales independently from the applications and dynamically matches
demand

* Filesystem Semi-Microkernel Approach
 Performs and scales well under various workloads

* Has all the benefits of user-level development
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