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•Existing Solutions:
• Libraries directly access the device
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• Drawback:
• Complicate the device access isolation and sharing

• Conclusion
• Centralized IO multiplexing
• Simpler isolation and sharing
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•HW is Fast – but SW Appears Slow
• notable overhead to trapping in and out of the kernel

• Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us

•Existing Solutions:
• Move Filesystems to the device 

• DevFS(FAST-18), CrossFS(OSDI-20)

• Drawback:
• “Smarter-HW” assumption 
• Unknown HW constraints

• Conclusion
• Realistic Assumption
• Ultra-fast Devices and NVMe protocol
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Background
•HW is Fast – but SW Appears Slow
• notable overhead to trapping in and out of the kernel

• Ep: For Optane 4800x, device cost ~10us, Linux I/O stack cost ~70us

• Possible solution: 
• Semi-Microkernel

• Or “filesystem as a process”(HotStorage-19)
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Background
• Semi-Microkernel
• An OS subsystem that runs as a user-level process
• Works in tandem with monolithic kernel

•Benefits of Semi-Microkernel
• Code velocity

• Quickly develop, modify, and deploy system software 
• Application-level debugging and testing

• Performance
• Scale subsystem independently from applications
• Avoid extra kernel overhead
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Background
• Semi-Microkernel
• An OS subsystem that runs as a user-level process
• Works in tandem with monolithic kernel

• Prior semi-microkernel
• Focus on networking

• Snap(SOSP-19), TAS(Eurosys-19)

• Possible for storage now
• User-level device driver(SPDK)
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•Challenge
• Base Performance
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uFS Design
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uFS Design
• Single-Threaded uServer
• uServer

• Directly accesses the device via SPDK

• Non-blocking polling
• Pinned memory as block buffer cache
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uFS Design
• Single-Threaded uServer
• uLib

• POSIX-API
• App-integrated file cache (lease-based)
• Open-lease management
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uFS Design
• Single-Threaded uServer
• The OS kernel only involves for 

initial authentication (fs_init) 
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uFS Design
• Single-Threaded uServer
• Inter-process communication

• Control: shared-mem IPC

• Cache-line-size message
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uFS Design
• Single-Threaded uServer
• Inter-process communication

• Control: shared-mem IPC

• Cache-line-size message
• Data: customized malloc in uLib

• uLib shares pages with uServer
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uFS Design
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uFS Design
•Multi-Threaded uServer
• Utilize the full bandwidth of current 

I/O devices
• More computation resource
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• Device requests qpair
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uFS Design
•Multi-Threaded uServer
• Scalable by design: sharing nothing
• Each worker has several private data 

structure
• Device requests qpair

• Msg rings buffer per apps
• Block buffer cache
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uFS Design
•Multi-Threaded uServer
• Data parallelism for scalability

• Shared-nothing architecture
• Divide filesystem states and data into threads
• minimizes the sharing of in-memory data structures across cores 
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Runtime Inode Ownership 

Employ Non-blocking Shared Structures Judiciously



uFS Design
•Multi-Threaded uServer
• Runtime Inode Ownership

• Each group of inodes is exclusively accessed by one worker
• No need for synchronization
• Pre-assign data bitmap to each worker for data allocation
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uFS Design
•Multi-Threaded uServer
• Runtime Inode Ownership

• Each group of inodes is exclusively accessed by one worker
• No need for synchronization
• Pre-assign data bitmap to each worker for data allocation

• Asymmetric Workers
• Primary(W0)

• Own and handles metadata workload (directory operations)
• Coordinates with the workers

• Worker
• File operations
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Dynamic	Load	Management
• Separate	load	managing	thread	(LoadMng)
• Periodically	gathers	load	stats	from	each	worker	(a	monitoring	window)
• Decides	per-worker	[load	goal]												Informs	each	worker	the	desired	goal
• Decides	number	of	cores										Activate/Deactivate	cores

•Worker	invokes	inode	reassignment
• Tracks	per-inode stats
• Given	[load	goal],	decides	which	groups	of	inodes	to	be	re-assigned
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Dynamic	Load	Algorithms
• Load	balancing
• Towards	minimizing	congestion	on	each	core

• Core	allocation
• Meets	a	per-core	CPU	utilization	goal
• Answer	the	“what	if”	questions	by	algorithmically	emulating	the	load	
balancing	results
• Load	balancing	as	a	black-box
• What	if	[add	one	core	|	no	change	|	remove	one	core]
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Employ	Non-blocking	Shared	Structures	Judiciously

• Dentry	Cache	and	Permission	Checking
• Recursive	HashMap
• Only	the	primary	worker	can	update	and	all	can	read
• Leverage	industrial-quality	lock-free	data	structures
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Employ	Non-blocking	Shared	Structures	Judiciously

• Dentry	Cache	and	Permission	Checking
• Recursive	HashMap
• Only	the	primary	worker	can	update	and	all	can	read
• Leverage	industrial-quality	lock-free	data	structures

• Global	Logic	Journal	that	allows	maximal	parallelism
• Each	worker	can	initialize	journal	transactions	independently	for	owned	inodes
• Negligible	overhead	added

• Recording	logic	modification	is	lightweight
• Minimal	critical	section	when	reserving	journal	blocks
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Evaluation
• uFS	offers	good	single-threaded	base	performance
• uFS	performs	well	as	a	multi-threaded	micro-kernel
• uFS	dynamically	scales	to	match	demand

• Load	Balancing	Experiments
• Core	Allocation	Experiments

• uFS	performs	and	scales	well	with	real	applications
• LevelDB	and	YCSB	workloads

• Platform
• Intel	Optane	905P	SSD;	Intel®	Xeon®	Gold	5218R	CPU
• Linux	5.4,	SPDK	18.04
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Core	Allocation	Experiments
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Core	Allocation	Experiments
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8	workloads:	each	changes	one	factor	by	N	steps	along	the	time
• Factor	example:	think-time,	data	screw	degree,	request	size
• uFS	delivers	between	91%	to	98%	throughput	of	Max
• uFS	controls	number	of	cores	as	needed



LevelDB:	uFS	with	Real	Apps
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• uFS	can	scale	much	better	than	ext4	
• uFS	will	allocate	different	number	of	cores	for	various	workloads	
• Giving	more	cores	(>10)	to	ext4	does	not	help	much	for	performance
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Conclusion
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• uFS:	a	filesystem	semi-microkernel
• Designs	for	modern	storage	device	performance	delivery	and	scalability

• Outperforms	ext4	under	LevelDB	workloads	by	1.22x	to	4.6x

• Scales	independently	from	the	applications	and	dynamically	matches	
demand	

• Filesystem	Semi-Microkernel	Approach
• Performs	and	scales	well	under	various	workloads
• Has	all	the	benefits	of	user-level	development
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• Filesystem	Semi-Microkernel	Approach
• Performs	and	scales	well	under	various	workloads
• Has	all	the	benefits	of	user-level	development

Thank	you!


