
File Systems Unfit as
Distributed Storage Backends:

Lessons from 10 Years of Ceph Evolution

Authors: Abutalib Aghayev, Sage Weil (Red Hat),

Michael Kuchnik, Mark Nelson (Red Hat),

Greg Ganger, George Amvrosiadis

Speaker: 李嘉豪

2

What is Ceph?1

Challenges2

Design of Bluestore3

Evaluation and results4

Outline

Conclusion and Future Work5

3

What is Ceph?

●A distributed storage system started in 2004 at UCSC

●Today, a widely used object, block, and file system

RADOS

(distributed object store)

librados

S3 block device POSIX

4

Distributed Storage Overview

Storage Nodes

● ● ●

Client Nodes

Metadata Service

High-speed network

● ● ●

5

Ceph Overview

6

Ceph - Storage Engine Evolution

7

What is Ceph1

Challenges2

Design of Bluestore3

Evaluation and results4

Outline

Conclusion and Future Work5

8

Challenge I: Efficient Transactions

Transactions simplify application development by

encapsulating a sequence of operation into a single

atomic unit of work.

e.g.: Modification to an object:

1. Update metadata

2. Write contents

9

Leveraging FS Internal Transactions

Drawbacks:

1. Most FS’s transaction functionality is unavailable to users

(mainly to keep internally consistent)

2. Btrfs expose internal transaction mechanisms to user, but

it lacks rollback functionality, which can cause

inconsistency.

10

Implementing the WAL in User Space

WAL:

1. Record modification in sequential logs

2. Call fsync

3. Apply modification to the file (successive transactions
must wait until step 3 is done to witness the effect of this
transaction)

11

Implementing the WAL in User Space

WAL:

1. Record modification in sequential logs

Extra writes

2. Call fsync

Can respond after this step is complete

3. Apply modification to the file (successive transactions
must wait until step 3 is done to witness the effect of this
transaction)

inefficient for read-modify-write operations

12

Non-Idempotent Operations

Idempotent:𝐴 ∗ 𝐴 = 𝐴

Operations need to be idempotent to use WAL

BUT:

1. clone 𝑎 → 𝑏

2. update 𝑎

3. update 𝑐

Is non-idempotent on Btrfs or XFS (think about if error occurred
between step 2 and 3)

13

Double writes

Latency can be hidden, but bandwidth cannot.

New objects may avoid double writes by only
logging metadata changes.

However, Filestore's usage of the filesystem make this
method hard to use.

14

Using a KV-Store as the WAL

NewStore Features:

• Store metadata in RocksDB

• Data overwrites are logged into RocksDB

• Namespace is decoupled from FS hierarchy

15

Using a KV-Store as the WAL

Newstore Advantages:

1. KV interface allows reading the new state of an
object without waiting for transaction to commit

2. Operations can be replayed by Copy-on-Write.

3. Double writes can be avoided for new objects

16

Challenge II: Fast Metadata Operations

Enumeration is necessary for operations like
scrubbing, recovery, or for serving list calls.

• Processing millions of inodes at once reduces the
effectiveness of dentry cache

• Directory contents spread out due to XFS
features, leading to slow split operations.

17

Challenge II: Fast Metadata Operations

18

Challenge III: New Storage Hardware

PMR HDDs

19

Challenge III: New Storage Hardware

SMR HDDs

20

Challenge III: New Storage Hardware

ZNS SSDs

21

Challenge III: New Storage Hardware

Attempts to modify production filesystems
(XFS,ext4,etc.) to work with the zone interface have
so far been unsuccessful.

Production filesystems are overwrite filesystems,
whereas the zone interface requires copy-on-write
approach.

22

Other Challenges

• Without the complete control of the IO stack, it is
hard for distributed filesystems to enforce storage
latency SLO

• Not good enough copy-on-write support

23

What is Ceph1

Challenges2

Design of Bluestore3

Evaluation and results4

Outline

Conclusion and Future Work5

24

Goals of BlueStore

1. Fast metadata operations

2. No consistency overhead for object writes

3. Copy-on-write clone operation

4. No journaling double-writes

5. Optimized IO pattern for HDD and SSD

25

Design of BlueStore

26

Layout of BlueFS

27

Design of BlueStore

1. Fast metadata operations

Store metadata in RocksDB

2. No consistency overhead for object writes

One cache flush for data write and metadata write

28

Design of BlueStore

3. Copy-on-write clone operation

4. No journaling double-writes

5. Optimized IO pattern for HDD and SSD

BlueStore is a copy-on-write storage engine

Small writes (16KiB for SSD, 64KiB for HDD) first

29

Features Enable by BlueStore

1. Choose the checksum block size based on the IO hints

2. Overwrite of EC data

3. Transparent compression

4. Exploring new interfaces

30

What is Ceph1

Challenges2

Design of Bluestore3

Evaluation and results4

Outline

Conclusion and Future Work5

31

Evaluation Setup

16 nodes Ceph cluster

1. Switch: Cisco Nexus 3264-Q 40GbE

2. CPU: 16-core Intel Xeon E5-2698Bv3 2GHz

3. RAM: 64GiB

4. SSD: Intel P3600 NVMe SSD

5. HDD: Seagate 4TB 7200RPM

6. NIC: Mellanox MCX314A-BCCT 40GbE

32

Bare RADOS Benchmarks

Different object sizes written with a queue depth of 128 (HDD)

33

Bare RADOS Benchmarks

Different object sizes written with a queue depth of 128 (HDD)

34

Bare RADOS Benchmarks

Different object sizes written with a queue depth of 128 (HDD)

35

Bare RADOS Benchmarks

Different object sizes written with a queue depth of 128 (HDD)

36

Bare RADOS Benchmarks

Different object sizes written with a queue depth of 128 (SSD)

37

RBD Benchmarks

• Data written to the device is striped into 4MiB RADOS
objects

• Create a 1TB virtual block device, and format it with XFS

• Use fio to run tests with queue depth of 256, IO size
ranges from 4KiB to 4MiB

• Each test writes about 30GiB of data

• Cache is reset before every experiment

38

RBD Benchmarks (HDD)

39

RBD Benchmarks (HDD)

40

RBD Benchmarks (HDD)

41

Overwriting EC Data (HDD)

5GiB of random 4KiB writes with 256 queue depth

42

What is Ceph1

Challenges2

Design of Bluestore3

Evaluation and results4

Outline

Conclusion and Future Work5

43

Conclusion

• BlueStore achieves its design goals and outperformes
FileStore which is established on FS

44

Conclusion

• BlueStore achieves its design goals and outperformes
FileStore which is established on FS

• BUT there are new challenges when building a storage
backend on raw storage

45

New Challenges

• Cache sizing and writeback
• How to dynamically resize page cache in user space?

• Key-value store efficiency
• RocksDB’s compaction and high write amplification becomes

primary performance limit

• Data serialization and copy consumes CPU time

• RocksDB has its own threading model

• CPU and memory efficiency
• How to reduce waste of memory due to data structure padding

• On high-end NVMe SSDs, workloads become CPU-bound

Thanks for your attention!

