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DNN models become large and complex
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Model size trends [1]

[1] https://openai.com/blog/ai-and-compute/Dataflow Graph for DNN model

How to reduce inference latency?



Various forms of sparsity

• Quantization

• Pruning

4

Quantization Pruning

32bits -> 2bits

32bits -> 2bits

32bits -> set 0



Various forms of sparsity (Cont.)

• Quantization

• Binarized models[20], 8-bit models[33, 68]

• Mixed precision[24, 38, 55, 47, 62]

• Pruning

• Fine-grained[29, 35, 36]

• Block sparsity[37, 40, 42, 44]

• Combination with quantization and pruning[28, 53, 54, 57, 61, 66]
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DNN operators customized for the sparsity patterns, 
the resulting model will, hopefully, come with a lower 
inference latency.

Active & Extensively!



The myth of FLOPS
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Unfortunately, model sparsity does not translate 
directly into performance benefits.



The myth of FLOPS (Cont.)
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The proxy metric(FLOP per sec) is flawed and leads to 
inaccurate results!



The myth of FLOPS
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The Gap between FLOPS and implementation

Q: distribution of sparsity in real workloads?



The diminishing end2end return
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Current optimizations focus on certain operators, ignoring the 
propagation across the whole model .



The diminishing end2end return
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Forward propagation opportunities



The diminishing end2end return
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Backward propagation opportunities



Across-stack sparsity innovations in silos
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Machine learning practitioners often have to implement their 
sparsity algorithms end-to-end manually.



Goals

• Problems

• Generic sparse kernels remain far from optimal.

• Local optimizations miss the global gains.

• The support for sparsity innovations is insufficient.

• Goals

• Extreme performance and applicability

• End-to-end optimization

• Customizable and extensible to new sparsity innovations

• Covering the whole-stack
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Outline

• Motivation

• Goals

• Design

• Design overview

• TeSA, propagation, code generation workflow

• Design meets goals

• Evaluation

• Related works
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Design overview

• TeSA: Tensor-with-Sparsity-Attribute

• Sparsity attribute propagation

• Generating efficient code
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Design - TeSA

• TeSA: Tensor-with-Sparsity-Attribute

• Initialized by users

• Updated by propagations
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Q: how to support dynamic sparsity pattern?

A irregular sparsity pattern case



Design - propagation

• Sparsity attribute propagation

• Propagation rules

19



Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution
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Conflict resolution：
• Pruning: the union 

of the pruned 
elements

• Low-precision: the 
lower precision



Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution

• Rules: manual input & automatic generation
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Tensorflow: 108+ operators Pytorch: 174+ operators

It is a burden to define propagation rules for every operator.



Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution

• Rules: manual input & automatic generation
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0

21346984

Pruned: set 0

Tensor scrambling detects the invariant elements of a tensor 
by scrambling the values of other related tensors.



Design – code generation workflow

• Generating efficient code

• Decomposition of TeSAs and 
operators

• Dead code elimination

• Hardware-supported low-precision 
instructions
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From a generic kernel for dynamic workloads to generated 
kernels for specific workloads.



Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and 
operators for irregular sparsity 
patterns

• Transformation policy
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Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and 
operators for irregular sparsity 
patterns

• Transformation policy

• Dead code elimination for 
regular patterns

• Hardware-supported low-
precision instructions

• Specialization policy
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Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and 
operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-
precision instructions

• Specialization policy: mma_sync, 
DP4A
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DP4A= multiplication and 
sum of four elements



Design highlights

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by  users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A
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Design meets goals
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Covering the whole-stack
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Customizable and extensible 
to new sparsity innovations



Design meets goals

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by  users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A
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End-to-end optimization
& Extreme performance



Outline

• Motivation

• Goals

• Design

• Evaluation

• Performance

• Effectiveness of designs

• Facilitating exploration of model sparsity

• Related works
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Evaluation - performance

• 5 pages in 12 pages

• If I were the author, …
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Evaluation – perf.

• 5 pages in 12 pages

• If I were the author, …

• End2end performance

• What models? * what sparsity algorithms? * what baselines? * what testbeds?

• Breakdown

• Pruning(dead code elimination), low-precision(hardware instruction), propagation(more 
pruning and low-precision elements)
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Evaluation – perf.

• 5 pages in 12 pages
• The author, …

• End2end performance(3*4*6*2)
• What models: MLP, MobileNet, BERT 

• What sparsity algorithms: coarse-grained pruning, fine-grained pruning, coarse-grained 
pruning+8bit, block pruning+8bit

• What baselines: Pytorch, TVM, TensorRT, SparGen-cuSPARRSE, DenseGen, SparGen

• What testbed: Nvidia GeForce RTX 2080Ti, AMD Radeon VII

• Breakdown
• Pruning(dead code elimination), low-precision(hardware instruction), propagation(more 

pruning and low-precision elements)

• For one kernel: 
• Workload: matrix multiplication, problem size (1024*1024*1024)

• cuSPARSE, cublas, TACO, Sparse GPU kernels, SparseRT, SparGen
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Algorithms: pruning (coarse-grained, fine-grained), low-precision, pruning + precision
No low-precision: the improvement is small since the baselines with quantization are good.



End2end performance analysis
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SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

In-consistent legends
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End2end performance analysis
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cuSPARSE latency TVM tuned kernel

Propagation &
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End2end performance analysis
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SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

cuSPARSE latency TVM tuned kernel

Propagation &
instruction

Unsupported 
v.s. general

DenseGen has 
good kernels



End2end performance analysis (cont.)
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SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

In-consistent results: TVM, cuSPARSE



End2end performance analysis (cont.)
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SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

With 60% sparsity initialization, get 4.3x 
than DenseGen: propagation



End2end performance analysis (cont.)
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SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

60% sparsity, get 4.3x:
propagation

Use cuSPARSE only for one linear 
layer. Conv is unsupported.



End2end performance analysis (cont.)
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SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

60% sparsity, get 4.3x:
propagation

Use cuSPARSE only for one linear 
layer. Conv is unsupported.

TensorRT optimize MobileNet 
with 8-bits

In-consistent results: TensorRT + MLP and +MobileNet/BERT
DenseGen has good kernels?



Performance Breakdown
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Due to w/o 8-bit

+precision gets more 0? And get more sparsity optimization space?



Performance comparison of one kernel
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cuSPARSE outperforms cublas 
only here.

SparGen outperforms cublas 
from here.



Evaluation – effecti.

• 5 pages in 12 pages

• If I were the author, …

• Micro-benchmarks

• Propagation rules: sparsity of layers with or without propagation

• What models? * what sparsity algo.?

• Transformation policy: generating kernels for mixed various sparsity algo.

• What kernel? * what sparsity algo.

• Specialization policy: new hardware
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Evaluation – effecti.

• 5 pages in 12 pages

• The author, …
• Micro-benchmarks

• Propagation rules: sparsity of layers with or without propagation

• What models (MLP) * what sparsity algo. (Block pruning, fine-grained pruning, coarse-grained 
pruning)

• What models (MobileNet) * what sparsity algo. (Quantization)

• Transformation policy: generating kernels for mixed various sparsity algo.

• What kernel (matrix multiplication, 1024*1024*1024)

• What sparsity algo.: mixed precision(float32 for 0-5% elements+int8), mix of block pruning for 
70%-90% elements and fine-grained pruning for 1% elements

• Specialization policy: new hardware

• Nvidia GeForce RTX 2080Ti, AMD Radeon VII
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Effectiveness on sparsity attribute propagation
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Initial sparsity:

Sparsity pattern:



Effectiveness on sparsity attribute propagation
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Initial sparsity:

Sparsity pattern:

Receive more propagations



Effectiveness on sparsity attribute propagation
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Initial sparsity:

Sparsity pattern:

Receive more propagations

The probability that an entire 
column or row is pruned is much 
lower



Effectiveness on sparsity attribute propagation
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Initial sparsity:

Sparsity pattern:

Receive more propagations

The probability that an entire 
column or row is pruned is much 
lower

More forward 
propagation due to 
entire row pruning in 
this experiment.



Effectiveness on sparsity attribute propagation
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Effectiveness of execution plan transformation
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float32 for 0-5% 
elements+int8

70%-90% elements and 
fine-grained pruning for 
1% elements



Evaluation - exploration

• 5 pages in 12 pages

• If I were the author, …

• Facilitating exploration of model sparsity

• Better

• Faster
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Evaluation - exploration

• 5 pages in 12 pages

• The author, …

• Facilitating exploration of model sparsity

• Profiling valuable feedback other than proxy metrics.

• Better: propagation aware sparsity exploration gets higher accuracy.

• Faster: speeding up sparsity exploration
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Exploration - real and valuable feedback
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Exploration - better and faster
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Prune 50%, then re-codegen



Related works

• Same goal + similar techniques: SparseRT(a special case)

• Same goal + various techniques: 

• PyTorch [48], TensorFlow [13], TVM/Ansor [18, 67], all treat model sparsity as 
an afterthought

• optimizations for certain type of hardware

• data format

• Same goal + orthogonal techniques: classic compiler techniques, new 
hardware
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Position

• SparGen:

• SparGen takes a principled system approach to model sparsity in deep 
learning, centered on the new TeSA abstraction. 

• SparGen is designed to accommodate a rich set of sparsity patterns, work 
end-to-end and across the stack to support propagation of sparsity patterns 
and the optimizations that take advantage of those patterns, and leverage 
compiler technology and hardware support, all in an extensible framework. 

• SparGen can not only contribute to superior sparsity-induced speedup, but 
also accelerate model sparsity innovations within a unified framework, for the 
first time
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SparTA: Deep-Learning Model Sparsity via 
Tensor-with-Sparsity-Attribute

Q&A
Presented by Guanbin Xu
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