
SparTA: Deep-Learning Model Sparsity via
Tensor-with-Sparsity-Attribute

Ningxin Zheng, Microsoft Research Asia; Bin Lin, Tsinghua University;
Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang, Yang Wang, Mao

Yang, and Lidong Zhou, Microsoft Research Asia

1

Presented by Guanbin Xu
@USTC_ADSL_ReadingGroup

Outline

• Motivation
• DNN models become large and complex

• Various forms of sparsity

• The myth of FLOPS

• The diminishing end2end return

• Across-stack sparsity innovations in silos

• Goals

• Design

• Evaluation

• Related works

2

DNN models become large and complex

3

Model size trends [1]

[1] https://openai.com/blog/ai-and-compute/Dataflow Graph for DNN model

How to reduce inference latency?

Various forms of sparsity

• Quantization

• Pruning

4

Quantization Pruning

32bits -> 2bits

32bits -> 2bits

32bits -> set 0

Various forms of sparsity (Cont.)

• Quantization

• Binarized models[20], 8-bit models[33, 68]

• Mixed precision[24, 38, 55, 47, 62]

• Pruning

• Fine-grained[29, 35, 36]

• Block sparsity[37, 40, 42, 44]

• Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

5

Various forms of sparsity (Cont.)

• Quantization

• Binarized models[20], 8-bit models[33, 68]

• Mixed precision[24, 38, 55, 47, 62]

• Pruning

• Fine-grained[29, 35, 36]

• Block sparsity[37, 40, 42, 44]

• Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

6

Active & Extensively!

Various forms of sparsity (Cont.)

• Quantization

• Binarized models[20], 8-bit models[33, 68]

• Mixed precision[24, 38, 55, 47, 62]

• Pruning

• Fine-grained[29, 35, 36]

• Block sparsity[37, 40, 42, 44]

• Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

7

DNN operators customized for the sparsity patterns,
the resulting model will, hopefully, come with a lower
inference latency.

Active & Extensively!

The myth of FLOPS

8

Unfortunately, model sparsity does not translate
directly into performance benefits.

The myth of FLOPS (Cont.)

9

The proxy metric(FLOP per sec) is flawed and leads to
inaccurate results!

The myth of FLOPS

10

The Gap between FLOPS and implementation

Q: distribution of sparsity in real workloads?

The diminishing end2end return

11

Current optimizations focus on certain operators, ignoring the
propagation across the whole model .

The diminishing end2end return

12

Forward propagation opportunities

The diminishing end2end return

13

Backward propagation opportunities

Across-stack sparsity innovations in silos

14

Machine learning practitioners often have to implement their
sparsity algorithms end-to-end manually.

Goals

• Problems

• Generic sparse kernels remain far from optimal.

• Local optimizations miss the global gains.

• The support for sparsity innovations is insufficient.

• Goals

• Extreme performance and applicability

• End-to-end optimization

• Customizable and extensible to new sparsity innovations

• Covering the whole-stack

15

Outline

• Motivation

• Goals

• Design

• Design overview

• TeSA, propagation, code generation workflow

• Design meets goals

• Evaluation

• Related works

16

Design overview

• TeSA: Tensor-with-Sparsity-Attribute

• Sparsity attribute propagation

• Generating efficient code

17

Design - TeSA

• TeSA: Tensor-with-Sparsity-Attribute

• Initialized by users

• Updated by propagations

18

Q: how to support dynamic sparsity pattern?

A irregular sparsity pattern case

Design - propagation

• Sparsity attribute propagation

• Propagation rules

19

Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution

20

Conflict resolution：
• Pruning: the union

of the pruned
elements

• Low-precision: the
lower precision

Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

21

Tensorflow: 108+ operators Pytorch: 174+ operators

It is a burden to define propagation rules for every operator.

Design – propagation (cont.)

• Sparsity attribute propagation

• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

22

0
0
0
0
0

21346984

Pruned: set 0

Tensor scrambling detects the invariant elements of a tensor
by scrambling the values of other related tensors.

Design – code generation workflow

• Generating efficient code

• Decomposition of TeSAs and
operators

• Dead code elimination

• Hardware-supported low-precision
instructions

23

From a generic kernel for dynamic workloads to generated
kernels for specific workloads.

Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and
operators for irregular sparsity
patterns

• Transformation policy

24

Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and
operators for irregular sparsity
patterns

• Transformation policy

• Dead code elimination for
regular patterns

• Hardware-supported low-
precision instructions

• Specialization policy

25

Design – code generation (cont.)

• Generating efficient code

• Decomposition of TeSAs and
operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-
precision instructions

• Specialization policy: mma_sync,
DP4A

26

DP4A= multiplication and
sum of four elements

Design highlights

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A

27

Design meets goals

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A

28

Covering the whole-stack

Design meets goals

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A

29

Customizable and extensible
to new sparsity innovations

Design meets goals

• TeSA: Tensor-with-Sparsity-Attribute
• Initialized by users

• Sparsity attribute propagation
• Propagation rules and conflict resolution

• Rules: manual input & automatic generation

• Generating efficient code
• Decomposition of TeSAs and operators

• Transformation policy

• Dead code elimination

• Hardware-supported low-precision instructions
• Specialization policy: mma_sync, DP4A

30

End-to-end optimization
& Extreme performance

Outline

• Motivation

• Goals

• Design

• Evaluation

• Performance

• Effectiveness of designs

• Facilitating exploration of model sparsity

• Related works

31

Evaluation - performance

• 5 pages in 12 pages

• If I were the author, …

32

Evaluation – perf.

• 5 pages in 12 pages

• If I were the author, …

• End2end performance

• What models? * what sparsity algorithms? * what baselines? * what testbeds?

• Breakdown

• Pruning(dead code elimination), low-precision(hardware instruction), propagation(more
pruning and low-precision elements)

33

Evaluation – perf.

• 5 pages in 12 pages
• The author, …

• End2end performance(3*4*6*2)
• What models: MLP, MobileNet, BERT

• What sparsity algorithms: coarse-grained pruning, fine-grained pruning, coarse-grained
pruning+8bit, block pruning+8bit

• What baselines: Pytorch, TVM, TensorRT, SparGen-cuSPARRSE, DenseGen, SparGen

• What testbed: Nvidia GeForce RTX 2080Ti, AMD Radeon VII

• Breakdown
• Pruning(dead code elimination), low-precision(hardware instruction), propagation(more

pruning and low-precision elements)

• For one kernel:
• Workload: matrix multiplication, problem size (1024*1024*1024)

• cuSPARSE, cublas, TACO, Sparse GPU kernels, SparseRT, SparGen

34

Algorithms: pruning (coarse-grained, fine-grained), low-precision, pruning + precision
No low-precision: the improvement is small since the baselines with quantization are good.

End2end performance analysis

35

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

In-consistent legends

End2end performance analysis

36

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

Propagation &
instruction

End2end performance analysis

37

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

cuSPARSE latency TVM tuned kernel

Propagation &
instruction

End2end performance analysis

38

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

cuSPARSE latency TVM tuned kernel

Propagation &
instruction

Unsupported
v.s. general

DenseGen has
good kernels

End2end performance analysis (cont.)

39

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

In-consistent results: TVM, cuSPARSE

End2end performance analysis (cont.)

40

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

With 60% sparsity initialization, get 4.3x
than DenseGen: propagation

End2end performance analysis (cont.)

41

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

60% sparsity, get 4.3x:
propagation

Use cuSPARSE only for one linear
layer. Conv is unsupported.

End2end performance analysis (cont.)

42

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

60% sparsity, get 4.3x:
propagation

Use cuSPARSE only for one linear
layer. Conv is unsupported.

TensorRT optimize MobileNet
with 8-bits

In-consistent results: TensorRT + MLP and +MobileNet/BERT
DenseGen has good kernels?

Performance Breakdown

44

Due to w/o 8-bit

+precision gets more 0? And get more sparsity optimization space?

Performance comparison of one kernel

45

cuSPARSE outperforms cublas
only here.

SparGen outperforms cublas
from here.

Evaluation – effecti.

• 5 pages in 12 pages

• If I were the author, …

• Micro-benchmarks

• Propagation rules: sparsity of layers with or without propagation

• What models? * what sparsity algo.?

• Transformation policy: generating kernels for mixed various sparsity algo.

• What kernel? * what sparsity algo.

• Specialization policy: new hardware

46

Evaluation – effecti.

• 5 pages in 12 pages

• The author, …
• Micro-benchmarks

• Propagation rules: sparsity of layers with or without propagation

• What models (MLP) * what sparsity algo. (Block pruning, fine-grained pruning, coarse-grained
pruning)

• What models (MobileNet) * what sparsity algo. (Quantization)

• Transformation policy: generating kernels for mixed various sparsity algo.

• What kernel (matrix multiplication, 1024*1024*1024)

• What sparsity algo.: mixed precision(float32 for 0-5% elements+int8), mix of block pruning for
70%-90% elements and fine-grained pruning for 1% elements

• Specialization policy: new hardware

• Nvidia GeForce RTX 2080Ti, AMD Radeon VII

47

Effectiveness on sparsity attribute propagation

48

Initial sparsity:

Sparsity pattern:

Effectiveness on sparsity attribute propagation

49

Initial sparsity:

Sparsity pattern:

Receive more propagations

Effectiveness on sparsity attribute propagation

50

Initial sparsity:

Sparsity pattern:

Receive more propagations

The probability that an entire
column or row is pruned is much
lower

Effectiveness on sparsity attribute propagation

51

Initial sparsity:

Sparsity pattern:

Receive more propagations

The probability that an entire
column or row is pruned is much
lower

More forward
propagation due to
entire row pruning in
this experiment.

Effectiveness on sparsity attribute propagation

52

Effectiveness of execution plan transformation

53

float32 for 0-5%
elements+int8

70%-90% elements and
fine-grained pruning for
1% elements

Evaluation - exploration

• 5 pages in 12 pages

• If I were the author, …

• Facilitating exploration of model sparsity

• Better

• Faster

54

Evaluation - exploration

• 5 pages in 12 pages

• The author, …

• Facilitating exploration of model sparsity

• Profiling valuable feedback other than proxy metrics.

• Better: propagation aware sparsity exploration gets higher accuracy.

• Faster: speeding up sparsity exploration

55

Exploration - real and valuable feedback

56

Exploration - better and faster

57

Prune 50%, then re-codegen

Related works

• Same goal + similar techniques: SparseRT(a special case)

• Same goal + various techniques:

• PyTorch [48], TensorFlow [13], TVM/Ansor [18, 67], all treat model sparsity as
an afterthought

• optimizations for certain type of hardware

• data format

• Same goal + orthogonal techniques: classic compiler techniques, new
hardware

58

Position

• SparGen:

• SparGen takes a principled system approach to model sparsity in deep
learning, centered on the new TeSA abstraction.

• SparGen is designed to accommodate a rich set of sparsity patterns, work
end-to-end and across the stack to support propagation of sparsity patterns
and the optimizations that take advantage of those patterns, and leverage
compiler technology and hardware support, all in an extensible framework.

• SparGen can not only contribute to superior sparsity-induced speedup, but
also accelerate model sparsity innovations within a unified framework, for the
first time

59

SparTA: Deep-Learning Model Sparsity via
Tensor-with-Sparsity-Attribute

Q&A
Presented by Guanbin Xu

68

backup

69

