SparTA: Deep-Learning Model Sparsity via
Tensor-with-Sparsity-Attribute

Ningxin Zheng, Microsoft Research Asia; Bin Lin, Tsinghua University;
Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang, Yang Wang, Mao
Yang, and Lidong Zhou, Microsoft Research Asia

Presented by Guanbin Xu
@USTC _ADSL ReadingGroup

Outline

* Motivation
* DNN models become large and complex
e Various forms of sparsity
* The myth of FLOPS
* The diminishing end2end return
e Across-stack sparsity innovations in silos

e Goals

* Design

e Evaluation

e Related works

DNN models become large and complex

CO P

C=AxB B
L1
A C

Dataflow Graph for DNN model

Parameters (log scaler)

Image-processing models GPT-3
. ; 175 billion
Language-processing models Google TS
11 billion . |ur|'ng M LG
BERT-large s GPT-2

SENet 330 million .5 billion
ResNet.50 ~2 X /year 146 million AmoebaNetB
26 million ' 557 million

YOLOv3

62 million

Inception v3

43 million

2014 2015 | 2016 | 2017 I 2018 I 2019 2020

Model size trends [1]

[1] https://openai.com/blog/ai-and-compute/

How to reduce inference latency?

Various forms of sparsity

* Quantization
* Pruning

oFec

32bits ->.2bits 32bits ->set 0

—
——
C=AxB B C=AxB B
32bits -> 2bits { ul -
A i A C

Quantization Pruning

Various forms of sparsity (Cont.)

* Quantization
* Binarized models[20], 8-bit models[33, 68]
* Mixed precision[24, 38, 55, 47, 62]
* Pruning
* Fine-grained[29, 35, 36]
* Block sparsity[37, 40, 42, 44]
 Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

Various forms of sparsity (Cont.)

* Quantization
* Binarized models[20], 8-bit models[33, 68]
* Mixed precision[24, 38, 55, 47, 62]
-pruning Active & Extensively!
* Fine-grained[29, 35, 36]
* Block sparsity[37, 40, 42, 44]
 Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

Various forms of sparsity (Cont.)

* Quantization
* Binarized models[20], 8-bit models[33, 68]
* Mixed precision[24, 38, 55, 47, 62]
-pruning Active & Extensively!
* Fine-grained[29, 35, 36]
* Block sparsity[37, 40, 42, 44]
 Combination with quantization and pruning[28, 53, 54, 57, 61, 66]

DNN operators customized for the sparsity patterns,
the resulting model will, hopefully, come with a lower
inference latency.

The myth of FLOPS

Unfortunately, model sparsity does not translate
directly into performance benefits.

The myth of FLOPS (Cont.)

We use the prediction accuracy of several CNN models on SVHN dataset to evaluate the efficacy of lmeters Tfrm ~Y _M

configurations. Model A is a CNN that costs about 80 FLOPs for one 40x40 image, and it consists calc fI;‘LOPS 4
oat

of seven convolutional layers and oie (f:;li)é corgﬁc\t‘cdihécglc ~ = wiwa Iva ualldWldth r, and Tcomm 23

A{[wrrith rmaar tA rnaar handwnadslh L Trmnnartantlsy aanlilb-a ’T’frm

By only requiring 1/4 number of the FLOPS they still manage to achieve a 2.7% increase in accuracy
for MobileNet-V 1. This also corresponds to a 1.53 times speed up on a Titan Xp GPU and 1.95 times

From the left of

1gure 1}

we see that in general, larger overparameterized CNN networks generalize

better for ImageNet (a large image classification benchmark dataset). However, recent architectures
that aim to reduce the number of floating point operations (FLOPs) and improve training efficiency
with less parameters have also shown impressive performance e.g EfficientNet [173]]. ition of compression tech-

niques 1s performance metric (e.g accuracy) vs model size. When evaluating for speedups obtained
from the model compression, the number of floating point operations (FLOPs) is a commonly used
metric. When claims of storage improvements are made, this can be demonstrated by reporting the
run-time memory footprint which is essentially the ratio of the space for storing hidden layer features
during run time when compared to the original network.

The proxy metric(FLOP per sec) is flawed and leads to
inaccurate results!

The myth of FLOPS

Table 1. Speed of matrix multiplication (1024*1024*1024) in

cuSPARSE and cuBLAS (unit: us).

Sparsity Ratio | 50% 90% | 95% | 99%
cuSPARSE 1652.5 | 633.9 | 463.0 | 181.7
cuBLAS 208.3 | 208.3 | 208.3 | 208.3

The Gap between FLOPS and implementation

Q: distribution of sparsity in real workloads?

10

The diminishing end2end return

Current optimizations focus on certain operators, ignoring the
propagation across the whole model .

11

The diminishing end2end return

1

N
Batch
Norm

Initial attributes

O Propagated attributes

[T]1OW]
WS

ReLU)—| T. —. Te

Figure 1. The sparsity attribute of one tensor can be propa-
gated along the deep learning network.

Forward propagation opportunities

12

The diminishing end2end return

Initial attributes

O Propagated attributes
O
WS

T, |{ ReLU)—| T. —. Te

Figure 1. The sparsity attribute of one tensor can be propa-
gated along the deep learning network.

Backward propagation opportunities

13

Across-stack sparsity innovations in silos

. Modern Accelerators
o ; s Dy
Quantization ;’;;"

* Binarized models[20], 8-bit models[33, 68]

« Mixed precision[24, 38, 55, 47, 62] @ +
Pruning Active & EXtenSiVEIV! s D NVIDIA GPU TR

* Fine-grained[29, 35, 36]
RADEON N NCT

* Block sparsity[37, 40, 42, 44] ’ ~
Graphcore IPU

Combination with quantization and pruning[28, 53, 54, 5

] || - sy
4 :J:I” .l'

Machine learning practitioners often have to implement their
sparsity algorithms end-to-end manually.

14

Goals

* Problems
* Generic sparse kernels remain far from optimal.
* Local optimizations miss the global gains.
* The support for sparsity innovations is insufficient.

* Goals
* Extreme performance and applicability
* End-to-end optimization
* Customizable and extensible to new sparsity innovations

* Covering the whole-stack

Outline

 Motivation
e Goals
* Design

* Design overview

* TeSA, propagation, code generation workflow

* Design meets goals
e Evaluation
* Related works

Design overview

* TeSA: Tensor-with-Sparsity-Attribute

 Sparsity attribute propagation
* Generating efficient code

DNN Mo‘del (DFG)

Initial Tensor

Propagation

Automatic Rule
Generation

I

Manual
Input |

Executable DNN Model

Sparsity Attribute Code Generation
..................... o Altribute Propagation
Ten:or-sbparsity __|Propagation Execution Plan
ttribute Rules Generation

Specialization |:
Policy
N §
e — §
Transformation|
Policy

Transformation
& Specialization

, DNN Model (DFG) with
Tensor Attribute

Figure 2. The system architecture of SparGen.

17

Design - TeSA

* TeSA: Tensor-with-Sparsity-Attribute

* |nitialized by users

* Updated by propagations 0.5 4| ala
lo|lo]o oo o[
4: unitd
1.9 414 s 8: unit8
Values Sparsity Attribute i Q; pruned

...

TeSA: Tensor with Sparsity Attribute
A irregular sparsity pattern case
Figure 3. An example of TeSA abstraction. Sparsity At-

tribute denotes the quantization scheme, 4 means uint4, 8
means uint8, and 0 means the element is pruned.

Q: how to support dynamic sparsity pattern?
18

Design - propagation

 Sparsity attribute propagation
* Propagation rules

WZ
\ |
W; x W] SNSS

‘\N
@ W3 .-\ H W3
- Initial sparsity

(a)) attributes

2
AN
%

Figure 4. The propagation of sparsity attribute. The gray
blocks are propagated sparsity attributes.

19

Design — propagation (cont.)

 Sparsity attribute propagation

* Propagation rules and conflict resolution

Wl
e

W,

W2
J Wlx WZ @ =25
/' Py

AN
%
?

Conflict resolution:
* Pruning: the union
of the pruned

/e
: X
| | -_.‘.-. ﬁ'us

ﬁ elements
‘ SN * Low-precision: the
W, N W [W, lower precision
? N Initial sparsity —=1—
e (b) attributes <)

Figure 4. The propagation of sparsity attribute. The gray
blocks are propagated sparsity attributes.

20

Design — propagation (cont.)

 Sparsity attribute propagation
* Propagation rules and conflict resolution
* Rules: manual input & automatic generation

- tf.nn https://pytorch.org/docs/stable/nn.htm

Overview
atrous_convZ2d
atrous_convZ2d_transpose
RREEConwv2d
avg_pool
avg_poolld
avg_pool3d
nn.Conwv3d

avg_pool_v2

batch_normalization

Tensorflow: 108+ operators Pytorch: 174+ operators

It is a burden to define propagation rules for every operator.

21

Design — propagation (cont.)

 Sparsity attribute propagation

. . . Pruned: set 0
* Propagation rules and conflict resolution

—A—
1

* Rules: manual input & automatic generation

-

D O O|O0O|O0

Tensor scrambling detects the invariant elements of a tensor
by scrambling the values of other related tensors.

Design — code generation workflow

* Generating efficient code

* Decomposition of TeSAs and
operators

 Dead code elimination

* Hardware-supported low-precision
instructions

Operator

Execution Plan
Transformation

[Code Generatior}.

Kernel

Implementation|

voi

7

Weight Input
w) N (1
X
K
N\ |
w N W,
‘BN
X X
d matmul_block_sparse_unit8(
float *A,float *B, float *C){
V

void matmul_sparse_float32(
float *A,float *B, float *C){

N\ 8bitsvalues Il 32 bits values

Figure 6. The two-pass compilation process to generate an
efficient kernel implementation for an operator.

From a generic kernel for dynamic workloads to generated

kernels for specific workloads.

23

Design — code generation (cont.)

* Generating efficient code

* Decomposition of TeSAs and
operators for irregular sparsity

AN NN NN
patterns PSR R NN
NN

* Transformation policy l 1

N N AN
+
N +
N\

N 32-bit B 8-bit [] Pruned

/i
/s

%

Y/

Figure 7. Examples of transformation policies.

24

Design — code generation (cont.)

* Generating efficient code Shpciie it (i A0t o 25 Emk Weken
Specialize —- »for (ki: int, 9, 2) 1 kala
* Decomposition of TeSAs and ol w Rl de T ‘MI%
o o for (n2: int, 0, 2){ :
operators for irregular sparsity L ST
patterns 01 = T1T2 * WlW3 @
777777 02 = T1T2 * W2W4
* Transformation policy o = .
* Dead code elimination for b 03 7
02— =12
regular patterns Jo2 4= 12 + ua P Pred ctemens
e L
S D Kept elements
* Hardware-supported low- e
oA y=—T4—i4—

precision instructions
Figure 9. Sparsity-aware code specialization: loop unrolling

* Specialization policy)
and dead code elimination.

25

Design — code generation (cont.)

* Generating efficient code

* Decomposition of TeSAs and
operators
* Transformation policy
* Dead code elimination
* Hardware-supported low-
precision instructions

e Specialization policy: mma_sync,
DP4A

for (ml: int, O, 2)
Specialize—{» for (nl1: int, 0, 2)

Specialize —- »for (ki: int, 9, 2)

for (k2: int, 0, 2)

—fer{m2—int; 02—

}

01 = T1T2 * W1W3
02 = T1T2 * W2W4
B3 =134 Wi
04 = T3T4 * W2W4

Ot r=—F1 1t
01 += T2 * W3
FHO2—=—T1—2-
02 += T2 * W4

T: m*k W: k*n

DP4A= multiplication and
sum of four elements

@

akifa

M

O: m*n

BN

. &

. Pruned elements

D Kept elements

Figure 9. Sparsity-aware code specialization: loop unrolling

and dead code elimination.

26

Design highlights

* TeSA: Tensor-with-Sparsity-Attribute
* |nitialized by users
 Sparsity attribute propagation
e Propagation rules and conflict resolution
* Rules: manual input & automatic generation

* Generating efficient code
* Decomposition of TeSAs and operators
* Transformation policy
* Dead code elimination

* Hardware-supported low-precision instructions
* Specialization policy: mma_sync, DP4A

Desigh meets goals

* TeSA: Tensor-with-Sparsity-Attribute
* |nitialized by users
 Sparsity attribute propagation
e Propagation rules and conflict resolution
* Rules: manual input & automatic generation

* Generating efficient code
* Decomposition of TeSAs and operators
* Transformation policy
* Dead code elimination

* Hardware-supported low-precision instructions
* Specialization policy: mma_sync, DP4A

Covering the whole-stack

28

Desigh meets goals

* TeSA: Tensor-with-Sparsity-Attribute

* |nitialized by users
 Sparsity attribute propagation

e Propagation rules and conflict resolution

e Rules: manual input & automatic generation
* Generating efficient code

* Decomposition of TeSAs and operators
* Transformation policy

e Dead code elimination

* Hardware-supported low-precision instruction:

* Specialization policy: mma_sync, DP4A

.

J

Customizable and extensible
to new sparsity innovations

29

Desigh meets goals

* TeSA: Tensor-with-Sparsity-Attribute

* |nitialized by users
e Sparsity attribute propagation

e Propagation rules and conflict resolution

* Rules: manual input & automatic generation
* Generating efficient code

* Decomposition of TeSAs and operators
* Transformation policy

e Dead code elimination

* Hardware-supported low-precision instruction!

* Specialization policy: mma_sync, DP4A

.

J

End-to-end optimization
& Extreme performance

30

Outline

* Motivation
* Goals
* Design
 Evaluation
* Performance

 Effectiveness of designs
* Facilitating exploration of model sparsity

e Related works

Evaluation - performance

* 5 pagesin 12 pages
* If | were the author, ...

* Initialized by users
Eva I u atio n — e rf * Sparsity attribute propagation
p e * Propagation rules and conflict resolution

* Rules: manual input & automatic generation L
End-to-end optimization

. * Generating efficient code > 2 Extreme berformance
¢ 5 pages IN 12 pages Decomposition of TeSAs and operators P
* Transformation policy
° |f | were the author’ . * Dead code elimination
* Hardware-supported low-precision instruction$
° Endzend performance * Specialization policy: mma_sync, DP4A J

* What models? * what sparsity algorithms? * what baselines? * what testbeds?

 Breakdown

* Pruning(dead code elimination), low-precision(hardware instruction), propagation(more
pruning and low-precision elements)

33

* Initialized by users
Eva I u atio n — pe rf * Sparsity attribute propagation
e * Propagation rules and conflict resolution
* Rules: manual input & automatic generation

End-to-end optimization
* Generating efficient code > P

& Extreme performance

* 5 pagesin 12 pages

) * Transformation policy
The aUthor' * Dead code elimination

e End2end performance(3*4*6*2) * Hardware-supported low-precision instruction$

* What models: MLP, MobileNet, BERT =~ * SPecializtion policy: mma_syne, DraA /

* What sparsity algorithms: coarse-grained pruning, fine-grained pruning, coarse-grained
pruning+8bit, block pruning+8bit

* What baselines: Pytorch, TVM, TensorRT, SparGen-cuSPARRSE, DenseGen, SparGen
 What testbed: Nvidia GeForce RTX 2080Ti, AMD Radeon VII
* Breakdown

* Pruning(dead code elimination), low-precision(hardware instruction), propagation(more
pruning and low-precision elements)

* For one kernel:
* Workload: matrix multiplication, problem size (1024*1024*1024)
* cuSPARSE, cublas, TACO, Sparse GPU kernels, SparseRT, SparGen

Algorithms: pruning (coarse-grained, fine-grained), low-precision, pruning + precision
No low-precision: the improvement is small since the baselines with quantization are good.

End2end performance analysis

B PyTorch E= SparGen+cuSPARSE EEH PyTorch 53 SparGen-cuSPARSE
K3 TVv™m [ZZ] DenseGen = TV™ ZZ] DenseGen — X1 TensorRT — X1 TensorRT
TensorRT [5%3] SparGen [ZX TensorRT [J SparGen g 0.8 =3 DenseGen g 08 £~3 DenseGen
. .066 . i -
8 g a‘ ZZ1 SparGen a ZZ] SparGen
=45 15 G 0.6 & 0.6
-~ —
%) %) © ol
S S - -
T 10 T 1.0 ® 04 ® 0.4
8 8 & 3
c Pt —_ —
9 0.5 9 05 oo ‘g 0.2 ‘%) 0.2
€ 2 % = X = X
- 0.0 XX X = §'o XXXYA® 0.0 0.0 —
' ' i 2080 Ti Radeon VI 2080 Ti Radeon VI
2080 Ti Radeon VII 2080 Ti Radeon VII
. : ; 2 : c¢) Coarse-grained sparsity + 8-bit d) Block sparsity + 8-bit
(a) Coarse-grained sparsity (b) Fine-grained sparsity (c) g p y (d) p Y

Figure 10. The end-to-end inference latency of MLP with four different sparsity patterns.
SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

In-consistent legends
35

End2end performance analysis

B PyTorch E= SparGen+cuSPARSE EEH PyTorch 53 SparGen-cuSPARSE
K3 TVv™m [ZZ] DenseGen = V™ ZZ] DenseGen — X TensorRT — X TensorRT
5%3 TensorRT 555 SparGen ZX TensorRT 1 SparGen g 0.8 =3 DenseGen g 08 £~3 DenseGen
~ B .066 - — pef " [ZZ2 SparGen P " [ZZ SparGen
: £ X £ = g 3
Propagation & 715 K b L = S 0.6 S 0.6
. . g\ 8 E Y 6 ‘c‘u‘
instruction § = 3 = N =5 > 04
10 KW E S E N 8" 8
3 SE= 3 SEN o o
s | BIKNE 5 05 |EEDN 02 02
2N BRE k3 =DN E =
E NE)= =4NZE X X
i NE - = \\ X X X X 0.0 0.0 —
' 2080 T Radeon VIl ' 2080 T1 Radion Vil 2080 Ti Radeon VI 2080 Ti Radeon VII
(a) Coarse-grained sparsity (b) Fine-grained sparsity (c) Coarse-grained sparsity + 8-bit (d) Block sparsity + 8-bit

Figure 10. The end-to-end inference latency of MLP with four different sparsity patterns.

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

36

End2end performance analysis

cuSPARSE latency TVM tuned kernel
B PyTorch E= SparGen+cuSPARSE EEH PyTokeh 53 SparGen-cuSPARSE
K TVM [ZZ1 DenseGen = TV ZZ] DenseGen — X1 TensorRT - X TensorRT
5%3 TensorRTy [3%3] SparGen [ZN TensyrRT [SparGen \g/o.B =3 DenseGen §0.8 £~3 DenseGen
- B 066 - - o ZZ2 SparGen o ZZ2 SparGen
p tion &E.. S E | E 2 2
ropagation 15 K =gt S 0.6 S 0.6
. . o (&] E "(U‘ ‘(-U‘
instruction g = 3 = N - -
§ 1.0 B= © — § Q 0.4 Q 0.4
3 e 2 ER 8 s
s | EKRE S = >N 0 @02 802
o NE o — Q % £ £
£ §E = =4\ZE 0 X| X
0 NE =RENZX XXX} o 0.0 0.0
- g SE ol e 2080Ti Radeon VI 2080Ti Radeon VII
(a) Coarse-grained sparsity (b) Fine-grained sparsity (c) Coarse-grained sparsity + 8-bit (d) Block sparsity + 8-bit

Figure 10. The end-to-end inference latency of MLP with four different sparsity patterns.

SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction

37

End2end performance analysis

cuSPARSE latency TVM tuned kernel Unsupported
v.S. general
B PyTorch E= SparGen+cuSPARSE E=H PyTokh 53 SparGen-cuSPARSE
K TVvm [ZZ]1 DenseGen = TVM™ ZZ] DenseGen S X1 TensorRT — X \TensorRT
5%3 TensorRTY [2%%] SparGen Z TensyrRT [CJ SparGen g 0.8 £~ DenseGen g 0.8
- Y .066 - - ; ZZ21 SparGen ‘;
: £ K £ = S S
Propagation &Z15 K 315 B 06 06
instruction § = 5 SEN 3 g
®© 10 X = © — § Q 0.4 Q 0.4
3 [ERE 3 [FER 2 2
s | B<RE 3 =N) 302 302
2N HNE 2 |EER W | E 3 . = .
i N= = =N\ X XX V4o 0.0 = 0.0 -
o = g e - 208 2088Ti Radeon VI
2080 Ti Radeon VII 2080 Ti Radeon VII
(a) Coarse-grained sparsity (b) Fine-grained sparsity (¢) Coarse-grained sparsity () Block sparsity +&:bit
Figure 10. The end-to-end inference latency of MLP with four different sparsity patterns.
DenseGen has
SparGen performs the best: 2.4x - 6.8x speedup: propagation + hardware instruction good kernels

38

End2end performance analysis (cont.)

B PyTorch E= SparGen+cuSPARSE =]
X TVMm [ZA DenseGen =
X3 TensorRT [SparGen &3
© 4 ® 4
E E
> - >
g3 [S'3
s M 8
@] ®
g 2 [— ; 2
s} B — (%)
- N— 0
5. HARNE/ -
1 mA\\= / o = 1
g INE/ o 2
= (KNS o £
o HINE/e] xxx [/J° 5
2080 Ti Radeon VI

(a) Coarse-grained sparsity

PyTorch EX3 SparGen+cuSPARSE
TVM [ZA DenseGen
TensorRT [0 SparGen
°
°
°
— °
— L]
:')Q o
:>< o
] o o
:>< °
:\A 9 XXX 2
2080 Ti Radeon VII

(b) Fine-grained sparsity

X1 TensorRT
2.5 K3 DenseGen
ZZ1 SparGen

N
o

=l
o

Inference Latency (ms)
& o

o
o

2080 Ti

= X TensorRT
£ 2.5 E£X3 DenseGen
ZZ1 SparGen

— - N
o v o

Inference Latency (
o
t”

X X

Radeon VII 2080 Ti Radeon VII

o
o

(c) Coarse-grained sparsity + 8-bit (d) Block sparsity + 8-bit

Figure 11. The end-to-end inference latency of MobileNet with four different sparsity patterns.

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

In-consistent results: TVM, cuSPARSE

39

End2end performance analysis (cont.)

With 60% sparsity initialization, get 4.3x
than DenseGen: propagation

EE PyTorch \E SparGen+cuSPARSE EE] PyTorch E=3 SparGen+cuSPARSE

X TVM [7A DenseGen /1 TVM [ZA DenseGen - X1 TensorRT - X TensorRT

EXJ TensorRT] SparGen £Z3 TensorRT [SparGen E 2.5 E=X3 DenseGen = 2.5 £33 DenseGen
—_ —_ 2T ZZ1 SparGen o ZZ2 SparGen
24 04 320 320
E E c c
> - > % 9 2
%3 ? § 3 T 15 © 15
— -— 0
© [© 2 8 3
2 [-k =2 o £1.0 =240
8 B \—-/ [+ 8 :')g °° @ ()

L - — — L Yoy
$. HNE/ o 5 = o L 05 L 05
w1 B ___‘/ o - 1 .__>< 0 - -
“QE) B QEE? %o g E>< v o - X - X
o B NEH 0] XXX [/J° B = \I1° X XX [1° 0.0 = 0.0
2080 Ti Radeon VI 2080 Ti Radeon VI 2080 Ti Radeon VI 2080 Ti Radeon VI

Figure 11. The end-to-end inference latency of MobileNet with four different sparsity patterns.

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

End2end performance analysis (cont.)

Use cuSPARSE only for one linear

60% sparsity, get 4.3X: |ayer. Conv is unsupported.

propagation

EE PyTorch \E SparGen+cuSPARSE EE] PyTorch E=3 SparGen+cuSPARSE

X TVM [7A DenseGen /1 TVM [ZA DenseGen - X1 TensorRT - X TensorRT

EXJ TensorRT] SparGen £Z3 TensorRT [SparGen E 2.5 E=X3 DenseGen = 2.5 £33 DenseGen
—_ —_ 2T ZZ1 SparGen o ZZ2 SparGen
24 04 320 320
E E c c
> - > 9 2
&3 H e3 % ®© 15 © 15
® . & g o © Q
2 [£ =2 o £1.0 =240
8] \— / [8 = oo) O

-~ = —1 ot o
& - §: /] & @ =\ 2 Qo5 Qo5
51 HANE o o = 7 = =
c B QE ? Yo < E>< | o - X - X
- 0 E NEH 0] xxx /e - 0 =4Ik X XX []° 0.0 = 0.0
2080 Ti Radeon VI 2080 Ti Radeon VI 2080 Ti Radeon VI 2080 Ti Radeon VI

Figure 11. The end-to-end inference latency of MobileNet with four different sparsity patterns.

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

End2end performance analysis (cont.)

Use cuSPARSE only for one linear TensorRT optimize MobileNet

60% sparsity, get 4.3X: |ayer. Conv is unsupported. with 8-bits

propagation

EE PyTorch \E SparGen+cuSPARSE EE] PyTorch E=3 SparGen+cuSPARSE
X1 TVM (7 A DenseGen 3 TVM [ZA DenseGen - X TensorRT - X TensorRT
£ TensorRT] SparGen £Z3 TensorRT [SparGen £ 2.5 <X DenseGen £ 2.5 KX DenseGen
] i >20 ZZ] SparGen ZZ SparGen
£ £ (& ¥4 (&)
— — C c
=. F > % g ' g
g3 ['3 T 15 © 15
SR = & ' o Q 8
ety I W - 9 o 8 1.0 8 1.0
8 B \— / [+ 8 = °° @ <
= -] c — — —
) o §: 75 ° @ — 7 Qo5 L o5
&' HNH SRS =) q % = =
< [IKREH of E =) o X X
A \\:-/7_] xxx [5 SONAL X X x [0.0 - 0.0 -
2080 Ti Radeon VII 2080 Ti Radeon VII T Radeon VII 2080 Ti Radeon VI
(a) Coarse-grained sparsity (b) Fine-grained sparsity (c) Coarse-grained sparsity + 8-bit (d) Block sparsity + 8-bit

Figure 11. The end-to-end inference latency of MobileNet with four different sparsity patterns.

SparGen performs the best: 3.7x - 7.8x speedup: propagation + hardware instruction

In-consistent results: TensorRT + MLP and +MobileNet/BERT
DenseGen has good kernels? 42

Performance Breakdown

Due to w/o 8-bit

4 DenseGen E=—1 +precision bad +sparsity [—Z +propagation

7

-
(&)

O
o

OO

0 O ¢ oo/
oo b 0 O
ooc// oo//

Coarse+8bit Block+8bit Fine-grained

N

Inference Latency (ms
o

|

Figure 13. Performance breakdown of SparGen for different
sparsity patterns of MobileNet on 2080 Ti. Each bar shows
the result of applying the additional optimization labeled on
this bar from the previous one.

+precision gets more 0? And get more sparsity optimization space?

44

Performance comparison of one kernel

---- cuBLAS Y TACO N1 SparseRT

. B=H cuSparse B3 [27] =1 SparGen

ié’/ 2.0 12 6590.1 5307.3 <4705.8 ¥3920.0 ><3293.8 ?833.4

5 < X

8 1.9 < < >< b

e K) 4 ¥ cuSPARSE outperforms cublas
= 1.0 4) X n only here.

205 E< g < /

o U IDH TKe= A <L 1) T

50% 70% [80% 90% 95% 99%
Sparsity Ratio

SparGen outperforms cublas
from here.

Figure 14. Comparison of cuSPARSE, TACO, and SparGen
on matrix multiplication (1024x1024x1024) with fine-grained

sparsity under different sparsity ratios. The sparsity is ap-
plied on B for A * B.

45

» TeSA: Tensor-with-Sparsity-Attribute \

* Initialized by users

E I t' n _ ff t s » Sparsity attribute propagation
va u a I o e e c I ° * Propagation rules and conflict resolution
* Rules: manual input & automatic generation

a - Customizable and extensible
» Generating efficient code >

to new sparsity innovations

L 5 pages | N 1 2 pages * Decomposition of TeSAs and operators
* Transformation policy
* Dead code elimination
[
If I WETE th €4d Uth or, ... * Hardware-supported low-precision instructions
* Specialization policy: mma_sync, DP4A J

* Micro-benchmarks
* Propagation rules: sparsity of layers with or without propagation
* What models? * what sparsity algo.?

* Transformation policy: generating kernels for mixed various sparsity algo.
* What kernel? * what sparsity algo.

» Specialization policy: new hardware

46

Evaluation — effecti.

* 5 pagesin 12 pages
e The author, ...
* Micro-benchmarks

» TeSA: Tensor-with-Sparsity-Attribute \
* Initialized by users
* Sparsity attribute propagation
* Propagation rules and conflict resolution
* Rules: manual input & automatic generation
* Generating efficient code
* Decomposition of TeSAs and operators

* Transformation policy

* Dead code elimination

X,

* Hardware-supported low-precision instructions

* Specialization policy: mma_sync, DP4A J

* Propagation rules: sparsity of layers with or without propagation

Customizable and extensible
to new sparsity innovations

* What models (MLP) * what sparsity algo. (Block pruning, fine-grained pruning, coarse-grained

pruning)

* What models (MobileNet) * what sparsity algo. (Quantization)

* Transformation policy: generating kernels for mixed various sparsity algo.
* What kernel (matrix multiplication, 1024*1024*1024)

* What sparsity algo.: mixed precision(float32 for 0-5% elements+int8), mix of block pruning for
70%-90% elements and fine-grained pruning for 1% elements

» Specialization policy: new hardware

* Nvidia GeForce RTX 2080Ti, AMD Radeon VII

47

Effectiveness on sparsity attribute propagation

|n|t|a| sparsitv: 50% —a— 70% 90% 70% —o— 90% 98% 50% —a— 70% 90%
P Yo+ 60% 80% 80% —+— 95% —¥— 60% 80%

il Re———— A

= — = i |

> 0.8 > = 0.8 / y \

I 7 7

— - 0.8 —

3 0.6 v——’*/\ S 3 0.6

7)) 7)) (7))

1 2 3 4 1 2 3 4 1 2 3 4
Layer Index Layer Index Layer Index

Sparsity pattern: (a) Block sparsity (b) Fine-grained sparsity (c) Coarse-grained sparsity

Figure 16. Propagated sparsity across the layers for different sparsity patterns on the MLP model.

48

Effectiveness on sparsity attribute propagation

Receive more propagations

In.t.al sparsity: 50% 70% 90% 70% —o— 90% 98% 50% —a— 70% 90%
Hat sSparsity: s 6o 80% 80% —4— 95% —¥— 60% 80%

o 10 .91'0‘_‘,/*\A o " 2

‘(-6 ‘(-U' .—‘/‘\‘ E e R i

Tos] \ © o8 /

g ;- :

g / \ g 08 @

o 06 ¥ Q a 0.6

0) n

1 2 3 4 1 2 3 4 1 2 5 B
Cayer Index Layer Index Layer Index

Sparsity pattern: (a) Block sparsity (b) Fine-grained sparsity (c) Coarse-grained sparsity

Figure 16. Propagated sparsity across the layers for different sparsity patterns on the MLP model.

Effectiveness on sparsity attribute propagation

Receive more propagations

Initial sparsity:

Sparsity pattern:

70%
80%

50%
—¥— 60%

i

:;:\
2 3 4
[ayer Index

-
o

TN

Sparsity Ratio
©
D

(a) Block sparsity

90%

Sparsity Ratio

70% —o— 90% 98% 50% —a— 70% 90%
80% —+— 95% -~ 60% 80%
1.0 —e— 5 1.0
- & |
.—Q/‘\. 4 ¥ ¥ v
0.8 4
3 0.6
%)
1 2 3 4 1 2 3 4
Layer Index Layer Index

(b) Fine-grained sparsity (c) Coarse-grained sparsity

Figure 16. Propagated sparsity across the layers for diﬁeéﬁt sparsity patterns on the MLP model.

The probability that an entire
column or row is pruned is much
lower

50

Effectiveness on sparsity attribute propagation

Receive more propagations

Initial sparsity:

Sparsity pattern:

50% 70%
—¥— 60% 80%

-
o

Sparsity Ratio
o
(0]

o
()]

:;:\
2 3 4
[ayer Index

(a) Block sparsity

90%

Sparsity Ratio

70% —o— 90%
80% —— 95%

—+ 1

0.8

1 2 3
Layer Index

(b) Fine-grained sparsity

98% 50% —a— 70% 90%

¥ 60% 80%

1.0
@]
prer} L |
& i I i
> 0.8 /
2
806
(0))]

1 2 3 4
Layer Index

(c) Coarse-grained sparsity

Figure 16. Propagated sparsity across the layers for diffeéit sparsity patterns on the MLP mod;\

The probability that an entire
column or row is pruned is much

lower

More forward
propagation due to
entire row pruning in
this experiment.

51

Effectiveness on sparsity attribute propagation

Before propagation —»— After propagation

32

Bit Width

16

0 5 10 15 20 25
Layer Index

Figure 17. The quantization (bit width) of each layer in
MobileNet before and after propagation. They have the same
accuracy.

52

Effectiveness of execution plan transformation

o)
E020 Eo20 [} N
> >< >
S 2 N
5015 K 5915 K]] 7
= ©
O N Q
8 0.05 K K %B G 0.05 E;E
@ 2
(7)) L e X
$3 1
3 2% 2 g 23 2
3 0 0 o O o & = &
LECE ~ & &
_CO
float32 for 0-5% a) Mixed precisions b) Mixed sparsity patterns
p p yp

elements+int8

Figure 15. The performance of the execution plan trans-
formation in SparGen for mixed precision and sparsity pat-
terns. B is sparsified for the matrix multiplication A * B
(1024x1024x1024). “X%-block” means X% block sparsity
mixed with 1% fine-grained sparsity.

70%-90% elements and
fine-grained pruning for
1% elements

53

The myth of FLOPS (Cont.)

We use the prediction accuracy of several CNN models on SVHN dataset to evaluate the efficacy of imeters T'ir'" ~ = M =
configurations. Model A is a CNN that costs about 80 FLOPs for one 40x40 image, and it consists + Leale FLOPS®

of seven convolutional layers and one fully-connected layer * float
: \ . —— WWILLL IN/AUYE ual]d\\'ldlh r, and 7‘(.0""“ ~

Evaluation - exploration AT, 7 e e vesdidlh 7 and T2 -

* 5 pagesin 12 pages
* If | were the author, ...

By only requiring 1/4 number of the FLOPS they still manage to achieve a 2.7% increase in accuracy
for MobileNet-V1. This also corresponds to a 1.53 times speed up on a Titan Xp GPU and 1.95 times

From the left of Figure T| we see that in general, larger overparameterized CNN networks generalize

better for ImageNet (a large image classification benchmark dataset). However, recent architectures

that aim to reduce the number of floating point operations (FLOPs) and improve training efficiency

with less parameters have also shown impressive performance e.g EfficientNet [[173]. ition of compression tech-
NIGues 1s Perrormance metne (e.g accuracy) vs model size. When evatuating for speedups obtained
from the model compression, the number of floating point operations (FLOPs) is a commonly used
metric. When claims of storage improvements are made, this can be demonstrated by reporting the
run-time memory footprint which is essentially the ratio of the space for storing hidden layer features
during run time when compared to the original network.

* Fa C|I|tat|ng exp|oration Of mOdel spa rSity The proxy metric(FLOP per sec) is flawed and leads to

Better

Faster

inaccurate results!

54

The myth of FLOPS (Cont.)

We use the prediction accuracy of several CNN models on SVHN dataset to evaluate the efficacy of imeters Tl.”“ ___“ e
configurations. Model A is a CNN that costs about 80 FLOPs for one 40x40 image, and it consists + Lealc FLOPS"®

of seven convolutsonal lavers and one fully-connected layer : . float
. : N 201 — WWILEL AN/AIVE uul]d\\'ldlh r, dnd T‘(‘ounn ~

Evaluation - exploration Pl TR - 7 e e vuadvidth 7 and T2

* 5 pagesin 12 pages
e The author, ...

By only requiring 1/4 number of the FLOPS they still manage to achieve a 2.7% increase in accuracy
for MobileNet-V1. This also corresponds to a 1.53 times speed up on a Titan Xp GPU and 1.95 times

From the left of Figure T| we see that in general, larger overparameterized CNN networks generalize

better for ImageNet (a large image classification benchmark dataset). However, recent architectures

that aim to reduce the number of floating point operations (FLOPs) and improve training efficiency

with less parameters have also shown impressive performance ¢.g EfficientNet [173] ition of compression tech-
NIQues 1S Perrormance metne (.2 accuracy) vs model size. When evatuating for speedups obtained
from the model compression, the number of floating point operations (FLOPs) is a commonly used
metric. When claims of storage improvements are made, this can be demonstrated by reporting the
run-time memory footprint which is essentially the ratio of the space for storing hidden layer features
during run time when compared to the original network.

° Fa C|I|tat|ng exp|oration Of model Spa rsity The proxy metric(FLOP per sec) is flawed and leads to

inaccurate results!

* Profiling valuable feedback other than proxy metrics.

* Better: propagation aware sparsity exploration gets higher accuracy.

* Faster: speeding up sparsity exploration

55

Exploration - real and valuable feedback

[FLOPS Based [SparGen Based

Acc:91.77%

m oG
52‘5 Acc:91.96%
>
Q
&
w poc:9738% | X X
- L. e Acc:91.18%
Q17
| =
©
=
-
L=
1.0

30% 40%

Figure 18. The comparison of using real latency or FLOPS
as metric to explore sparse models by Simulated Annealing.

56

Exploration - better and faster

Prune 50%, then re-codegen

N

0.951 - —— With SparGen —— Without SparGen
U 70) - ;‘* — 1
0.94 2 :
9 = 601 '
© 0.931 » H
0 Resnet18(SparGen) € 50
q.0.92 —»— Resnet18 c
0.91 —=— Mobilenet_v2(SparGen) E 40
Mobilenet_v2 30
A 0 100 200 300 400 500 600 700 800
Latency(ms) Training Epoch

Figure 19. The performance comparison of being aware o Figure 20. The exploration time when using SparGen-
sparsity propagation and not being aware. accelerated sparse model vs. not using the accelerated model.

57

Related works

e Same goal + similar techniques: SparseRT(a special case)

 Same goal + various techniques:
* PyTorch [48], TensorFlow [13], TVM/Ansor [18, 67], all treat model sparsity as
an afterthought
* optimizations for certain type of hardware
* data format
 Same goal + orthogonal techniques: classic compiler techniques, new

hardware

Position

* SparGen:

* SparGen takes a principled system approach to model sparsity in deep
learning, centered on the new TeSA abstraction.

» SparGen is designed to accommodate a rich set of sparsity patterns, work
end-to-end and across the stack to support propagation of sparsity patterns
and the optimizations that take advantage of those patterns, and leverage
compiler technology and hardware support, all in an extensible framework.

e SparGen can not only contribute to superior sparsity-induced speedup, but
also accelerate model sparsity innovations within a unified framework, for the
first time

59

SparTA: Deep-Learning Model Sparsity via
Tensor-with-Sparsity-Attribute

Q&A

Presented by Guanbin Xu

backup

