Z&5
Large Scale Deep Learning with

TensorFlow

Jeff Dean
Google Brain Team
g.co/brain

In collaboration with many other people at Google

http://g.co/brain
http://g.co/brain

Important Property of Neural Networks

Results get better with

more data +
bigger models +
more computation

Large Datasets + Powerful Models

e Combination works incredibly well
e Poses interesting systems problems, though:

O

O

O

Need lots of computation

Want to train and do experiments quickly
Large-scale parallelism using distributed systems
really only way to do this at very large scale

Also want to easily express machine learning ideas

P

Basics of Deep Learning

Unsupervised cat

Speech

Vision

General trend is towards more complex models:
o Embeddings of various kinds

o Generative models

o Layered LSTMs

o Attention

What do you want in a machine learning system?

Ease of expression: for lots of crazy ML ideas/algorithms
Scalability: can run experiments quickly

Portability: can run on wide variety of platforms
Reproducibility: easy to share and reproduce research
Production readiness: go from research to real products

fTensorFIow

http.//tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license

http://tensorflow.org/
http://tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

TensorFlow: A system for large-scale machine learning

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang Zheng

Google Brain

Preprint: arxiv.org/abs/1605.08695
Updated version to appear in OSDI 2016

http://arxiv.org/abs/1605.08695

Motivations L

TensorFlow

e DistBelief (our 1st system) was the first scalable deep
learning system, but not as flexible as we wanted for
research purposes

e Better understanding of problem space allowed us to
make some dramatic simplifications

TensorFlow: Expressing High-Level ML Computations

e Corein C++
o Very low overhead

TensorFlow: Expressing High-Level ML Computations

e Corein C++
o Very low overhead

e Different front ends for specifying/driving the computation
o Python and C++ today, easy to add more

TensorFlow: Expressing High-Level ML Computations

e Corein C++
o Very low overhead

e Different front ends for specifying/driving the computation
o Python and C++ today, easy to add more

C++ front end Python front end
Core TensorFlow Execution System

(oo) (omv) (pwaoe) (o5 J ()

Computation is a dataflow graph

biases Graph of Nodes, also called Operations or ops.

examples

labels

o en 50‘5
Computation is a dataflow graph \N\‘“t

biases Edges are N-dimensional arrays: Tensors

examples

labels

Example TensorFlow fragment

e Build a graph computing a neural net inference.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input _data.read _data_sets('MNIST data', one hot=True)

X

W
b
y

tf.placeholder("float", shape=[None, 784])
tf.Variable(tf.zeros([784,10]))
tf.Variable(tf.zeros([10]))
tf.nn.softmax(tf.matmul(x, W) + b)

L. xe
Computation is a dataflow graph \N““ s\a

'Biases' is a variable Some ops compute gradients —= updates biases

| biases I:

learning rate

Symbolic Differentiation

e Automatically add ops to calculate symbolic gradients
of variables w.r.t. loss function.
e Apply these gradients with an optimization algorithm

y = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reduce sum(y_* tf.log(y))
opt = tf.train.GradientDescentOptimizer(0.01)
train_op = opt.minimize(cross_entropy)

Define graph and then execute it repeatedly

e Launch the graph and run the training ops in a loop

init = tf.initialize _all variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):
batch xs, batch_ys = mnist.train.next batch(100)
sess.run(train_step, feed dict={x: batch xs, y : batch _ys})

Session Interface

e Extend:add nodesto computation graph

e Run: execute an arbitrary subgraph

o optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and

then Run it thousands or millions or times

Computation is a dataflow graph

biases

learning rate

Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops

GPU 0 CPU

biases

o

learning rate

Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops

ﬁ GPUO CPU
biases
b OO
Csend D~

, CReov >
learning rate -7

Send and Receive Implementations

e Different implementations depending on source/dest devices
e e.g. GPUs on same machine: local GPU — GPU copy
e e.g. CPUs on different machines: cross-machine RPC

e e.g. GPUs on different machines: RDMA

Data Parallelism

Parameter Servers

0[SOS [[SR

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers

0[SOS [S SR

/

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers

0[SOS [S SR

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers p’=p+Ap

0[SOS [S SR

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers p’=p+Ap

0[SOS [S SR

/),

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers

0[SOS [S SR

v/
(]

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers p’=p’ +Ap

0[SOS [S SR

v/
(]

Reices (00| (00| (00| |00 --- (OO
Data 25
S B e B e R

Data Parallelism

Parameter Servers

p =p *+Ap

LO@al

a0

DistBelief: Separate Parameter Servers

Parameter update rules not the same programming model as
the rest of the system

Separate code for parameter servers vs. rest of system

Lacked uniformity & was more complicated

Cross process communication is the same!

e Communication across machines over the network abstracted identically to
cross device communication.

ﬁ ljob:worker/cpu:0 ljob:ps/gpu:0
biases RN

<
®® < <4<

learning rate @

@ @®

No specialized parameter server subsystem!

Runs on Variety of Platforms

single machines (CPU and/or GPUs) ...

distributed systems of 100s

of machines and/or GPU cards custom ML hardware
\\

Fathom [T_)

Trend: Much More Heterogeneous hardware

General purpose CPU performance scaling has slowed
significantly

Specialization of hardware for certain workloads will be more
Important

In production use for >16 months: used on every
search query, used for AlphaGo match, many
other uses, ...

See Google Cloud Platform blog: Google supercharges machine learning tasks with TPU custom chip,
by Norm Jouppi, May, 2016

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

Extensible

e Core system defines a number of standard operations
and kernels (device-specific implementations of
operations)

e Easy to define new operators and/or kernels

Single device performance important, but

biggest performance improvements come
from large-scale distributed systems with
model and data parallelism

