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Important Property of Neural Networks

Results get better with

more data +
bigger models +
more computation




Large Datasets + Powerful Models

e Combination works incredibly well
e Poses interesting systems problems, though:
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Need lots of computation

Want to train and do experiments quickly
Large-scale parallelism using distributed systems
really only way to do this at very large scale

Also want to easily express machine learning ideas

P



Basics of Deep Learning

Unsupervised cat

Speech

Vision

General trend is towards more complex models:
o Embeddings of various kinds

o Generative models

o Layered LSTMs

o Attention




What do you want in a machine learning system?

Ease of expression: for lots of crazy ML ideas/algorithms
Scalability: can run experiments quickly

Portability: can run on wide variety of platforms
Reproducibility: easy to share and reproduce research
Production readiness: go from research to real products




fTensorFIow

http.//tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license
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Motivations L

TensorFlow

e DistBelief (our 1st system) was the first scalable deep
learning system, but not as flexible as we wanted for
research purposes

e Better understanding of problem space allowed us to
make some dramatic simplifications



TensorFlow: Expressing High-Level ML Computations

e Corein C++
o Very low overhead
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TensorFlow: Expressing High-Level ML Computations

e Corein C++
o Very low overhead

e Different front ends for specifying/driving the computation
o Python and C++ today, easy to add more

C++ front end Python front end
Core TensorFlow Execution System
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Computation is a dataflow graph

biases Graph of Nodes, also called Operations or ops.

examples

labels
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Computation is a dataflow graph \N\‘“t

biases Edges are N-dimensional arrays: Tensors

examples

labels




Example TensorFlow fragment

e Build a graph computing a neural net inference.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input _data.read _data_sets('MNIST data', one hot=True)

X

W
b
y

tf.placeholder("float", shape=[None, 784])
tf.Variable(tf.zeros([784,10]))
tf.Variable(tf.zeros([10]))
tf.nn.softmax(tf.matmul(x, W) + b)
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'Biases' is a variable Some ops compute gradients —= updates biases

| biases I:

learning rate




Symbolic Differentiation

e Automatically add ops to calculate symbolic gradients
of variables w.r.t. loss function.
e Apply these gradients with an optimization algorithm

y = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reduce sum(y_* tf.log(y))
opt = tf.train.GradientDescentOptimizer(0.01)
train_op = opt.minimize(cross_entropy)



Define graph and then execute it repeatedly

e Launch the graph and run the training ops in a loop

init = tf.initialize _all variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):
batch xs, batch_ys = mnist.train.next batch(100)
sess.run(train_step, feed dict={x: batch xs, y : batch _ys})



Session Interface

e Extend:add nodesto computation graph

e Run: execute an arbitrary subgraph

o optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and

then Run it thousands or millions or times




Computation is a dataflow graph
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Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops

GPU 0 CPU

biases

o

learning rate




Assign Devices to Ops

e TensorFlow inserts Send/Recv Ops to transport tensors across devices
e Recv ops pull data from Send ops
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Send and Receive Implementations

e Different implementations depending on source/dest devices
e e.g. GPUs on same machine: local GPU — GPU copy
e e.g. CPUs on different machines: cross-machine RPC

e e.g. GPUs on different machines: RDMA







Data Parallelism

Parameter Servers
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Data Parallelism

Parameter Servers

p =p *+Ap
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DistBelief: Separate Parameter Servers

Parameter update rules not the same programming model as
the rest of the system

Separate code for parameter servers vs. rest of system

Lacked uniformity & was more complicated




Cross process communication is the same!

e Communication across machines over the network abstracted identically to
cross device communication.

ﬁ ljob:worker/cpu:0 ljob:ps/gpu:0
biases RN
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No specialized parameter server subsystem!



Runs on Variety of Platforms

single machines (CPU and/or GPUs) ...

distributed systems of 100s

of machines and/or GPU cards custom ML hardware
\\
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Trend: Much More Heterogeneous hardware

General purpose CPU performance scaling has slowed
significantly

Specialization of hardware for certain workloads will be more
Important




In production use for >16 months: used on every
search query, used for AlphaGo match, many
other uses, ...

See Google Cloud Platform blog: Google supercharges machine learning tasks with TPU custom chip,
by Norm Jouppi, May, 2016



https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

Extensible

e Core system defines a number of standard operations
and kernels (device-specific implementations of
operations)

e Easy to define new operators and/or kernels




Single device performance important, but

biggest performance improvements come
from large-scale distributed systems with
model and data parallelism






