
Read as Needed: Building WiSER, a Flash-
Optimized Search Engine

FAST ‘20

Jun He, Kan Wu, Sudarsun Kannan , Andrea C. Arpaci-Dusseau, 

Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin–Madison 

Department of Computer Science, Rutgers University 

Presented by Zhexin Jin andYuming Xu, USTC, ADSL
April 24th, 2020

12020/4/24 ADSL



2

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



3

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



4

Motivation

2020/4/24

SSDs provide
• High throughput
• Low latency
• High read bandwidth
• Inexpensive

Many applications/systems have been 
optimized for SSDs
• Key-value stores: RocksDb, Wisckey, ... 
• Graph stores: FlashGraph, Mosaic, ... 
• File systems: SFS, F2FS, ... 

But search engines are overlooked!



5

Motivation

2020/4/24

Search engines require
• Low data latency: queries are interactive 
• High data throughput: engines retrieve info from a large amount of data
• High scalability: data grows over time 

Just use more RAM? 
• Cost prohibitive at large scale
• Data grows fast
• may waste bandwidth: rarely read and process 100GB/s



6

Motivation

2020/4/24

Can search engines perform well with 
a small memory and a fast SSD? 



7

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



8

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 



9

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 



10

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 



11

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 



12

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

TF: Term frequency



13

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

POS: Position



14

Inverted index

2020/4/24

1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

OFF: Byte offset



15

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese



16

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese



17

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese



18

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Score
xx
xx
xx

Single-term query: cheese



19

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Score
xx
highest
xx

Fried cheese
curds, cheddar 

cheese sale.

Single-term query: cheese



20

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese
Two-term query: 
• cheese AND curd
• cheese OR curd



21

Query processing

2020/4/24

1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese
Two-term query: 
• cheese AND curd
• cheese OR curd
Phrase query:
• cheese curd



22

Elasticsearch

2020/4/24

For Wikipedia 
• Term Index: 4 MB
• Term Dictionary: 200 MB
• Skiplist, ID-TF: 2.7 GB
• POS: 4.8 GB
• OFF: 2.8 GB

Elasticsearch groups data of different stages into multiple locations. 



23

Elasticsearch

2020/4/24

Term Index maps a term to an entry in Term Dictionary. 



24

Elasticsearch

2020/4/24

A Term Dictionary entry contains 
• metadata about a term (e.g., doc frequency) 
• pointer pointing to document IDs and  Term 

Frequencies (ID-TF)
• pointer pointing to positions (POS)
• pointer pointing to byte offsets (OFF). 



25

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



262020/4/24



272020/4/24



282020/4/24



292020/4/24



302020/4/24



312020/4/24



322020/4/24



332020/4/24



342020/4/24



352020/4/24



362020/4/24



372020/4/24



382020/4/24



392020/4/24



402020/4/24



412020/4/24



422020/4/24



432020/4/24



442020/4/24



45

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



462020/4/24



47

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



48

Setup

2020/4/24

• 16 CPU cores
• 64-GB RAM
• 256-GB NVMe SSD
• Peak read bandwidth is 2.0 GB/s
• Peak IOPS is 200,000

• Ubuntu with Linux 4.4.0
• Use only 512 MB of memory (using a Linux container)



49

WSBench

2020/4/24

• Dataset: Wikipedia 
• Total size: 18 GB
• 6 million documents, 6 million unique terms

• Queries:
• single term queries, “and” queries, “phrase” queries, 

real queries 
• vary term popularities in wikipedia

popularity level = document frequency = the number of documents in which a term appears



50

Cross-stage Data Grouping

2020/4/24

Decomposed Traffic of Single-Term Queries 

• waste: the data that is unnecessarily read
• docid: the ideally needed data of document ID 
• off: offset

• tf: term frequency
• ti: term index/dictionary
• es_no_pref: Elasticsearch without prefetch 

Popularity level:

2.9x



51

Cross-stage Data Grouping

2020/4/24

Decomposed Traffic of Single-Term Queries 

Popularity level:

2.9x

Elasticsearch needs three separate I/O requests: 
1. Term index     2. ID, TF     3. Offsets 
WiSER only needs one I/O request!



52

Cross-stage Data Grouping

2020/4/24

Decomposed Traffic of Single-Term Queries 

Popularity level:

2.9x

Elasticsearch needs three separate I/O requests: 
1. Term index     2. ID, TF     3. Offsets 
WiSER only needs one I/O request!

Reduce read amplification!



53

Cross-stage Data Grouping

2020/4/24

I/O Traffic of Two-term Match Queries 



54

Cross-stage Data Grouping

2020/4/24

I/O Traffic of Two-term Match Queries 

Naive prefetch in Elasticsearch can increase read amplification significantly!



55

Two-Way Cost-Aware Bloom Filters

2020/4/24

I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters



56

Two-Way Cost-Aware Bloom Filters

2020/4/24

I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters

WiSER without our Bloom filters demands 
a similar amount of data as Elasticsearch.



57

Two-Way Cost-Aware Bloom Filters

2020/4/24

I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters

WiSER with Bloom filters incurs much 
less I/O traffic!



58

Two-Way Cost-Aware Bloom Filters

2020/4/24

Decomposed Traffic Analysis of Phrase Queries 

Popularity level:

• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters
• ideally: byte-addressable

• bloom: the ideally needed data of Bloom filters
• docid: document ID 
• pos: positions
• tf: term frequencies



59

Two-Way Cost-Aware Bloom Filters

2020/4/24

Decomposed Traffic Analysis of Phrase Queries 

Popularity level:

Reduce the traffic from positions and term frequencies!



60

Adaptive Prefetching

2020/4/24



61

Trade Disk Space for Less I/O

2020/4/24



62

End-to-end Performance

2020/4/24

Single Term Matching Latency Single Term Matching Throughput 

• Throughput: QPS (Queries Per Second)
• es: Elasticsearch with prefetch (128 KB)
• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER



63

End-to-end Performance

2020/4/24

Single Term Matching Latency Single Term Matching Throughput 

Due to WiSER’s less efficient score calculation.



64

End-to-end Performance

2020/4/24

Phrase Query QPS Phrase Queries Latency 

• Throughput: QPS (Queries Per Second)
• es: Elasticsearch with prefetch (128 KB)
• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters



65

End-to-end Performance

2020/4/24

Phrase Query QPS Phrase Queries Latency 

• Elasticsearch with OS prefetch (es) achieves the lower 
latency because the OS prefetches 128 KB of positions 
data and avoids waiting for many page faults.

• Although the latency of individual queries is lower, the 
query throughput is also lower due to the read 
amplification caused by prefetch.



66

End-to-end Performance

2020/4/24

Throughput of Derived Workloads 

• For single-term queries, WiSER achieves as high as 2.2x throughput compared to Elasticsearch. 
• Around 60% queries in the real workload are of popularity less than 10,000.

• For multi-term match queries, grouped data layout also helps to increase throughput by more than 60%. 
• For phrase queries, WiSER with Bloom filters increases throughput by more than 60%.

• wiser: unknown
• wiser_al: unknown
• wiser_al_bf: unknown
• Normalized to the throughput of 

Elasticsearch without Prefetching 



67

Scaling with Memory

2020/4/24

Performance over a range of memory sizes 

• es: Elasticsearch without prefetch
• wiser_base: WiSER with only cross-stage grouping 
• wiser_final: fully-optimized WiSER

• single.high: high popularity level
• single.low: low popularity level



68

Scaling with Memory

2020/4/24

Performance over a range of memory sizes 

Due to the network issue of Elasticsearch.



69

Scaling with Memory

2020/4/24

Performance over a range of memory sizes 

• As expected, query throughput is higher, and latency is lower, when more memory is available. 
• WiSER has much higher query throughput and much lower query latency than Elasticsearch 

across all workloads and memory sizes. 
• WiSER’s traffic sizes increase much slower than Elasticsearch’s as we reduce memory sizes.



70

Outline
•Motivation
• Background
•Design
• Implementation
• Evaluation
•Conclusion

2020/4/24



71

Conclusion

2020/4/24

IO is the bottleneck



72

Conclusion

2020/4/24

IO is the bottleneck

Cross-stage 
Data Grouping Two-Way Cost-Aware 

Bloom Filters Adaptive Prefetching

Trade Disk Space 
for Less I/O



73

Conclusion

2020/4/24

IO is the bottleneck

Cross-stage 
Data Grouping Two-Way Cost-Aware 

Bloom Filters Adaptive Prefetching

Trade Disk Space 
for Less I/O

Reduce read 
amplification

Reduce read 
amplification

Reduce I/O 
traffic

Reduce I/O 
traffic

Reduce I/O 
traffic for phrase Reduce latency



74

Conclusion

2020/4/24

IO is the bottleneck

Cross-stage 
Data Grouping Two-Way Cost-Aware 

Bloom Filters Adaptive Prefetching

Trade Disk Space 
for Less I/O

Reduce read 
amplification

Reduce read 
amplification

Reduce I/O 
traffic

Reduce I/O 
traffic

Reduce I/O 
traffic for phrase Reduce latency

Improve performance (throughput)



2020/4/24

Read as Needed: Building WiSER, a Flash-Optimized 
Search Engine

Thanks & QA!

April 24th, 2020


