Read as Needed: Building WiSER, a Flash-Optimized Search Engine

FAST '20

Jun He, Kan Wu, Sudarsun Kannan , Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin–Madison Department of Computer Science, Rutgers University

Presented by **Zhexin Jin** and **Yuming Xu**, USTC, ADSL April 24th, 2020

2020/4/24

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

Motivation

SSDs provide

- High throughput
- Low latency
- High read bandwidth
- Inexpensive

Many applications/systems have been optimized for SSDs

- Key-value stores: RocksDb, Wisckey, ...
- Graph stores: FlashGraph, Mosaic, ...
- File systems: SFS, F2FS, ...

But search engines are overlooked!

2020/4/24 \pm

Motivation

Search engines require

- Low data latency: queries are interactive
- High data throughput: engines retrieve info from a large amount of data
- High scalability: data grows over time

Just use more RAM?

- Cost prohibitive at large scale
- Data grows fast
- may waste bandwidth: rarely read and process 100GB/s

2020/4/24 . The second contraction of the

Motivation

Can search engines perform well with a small memory and a fast SSD?

2020/4/24 . The second contraction of the

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

2020/4/24 . The second contraction is the second contraction of the

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

	ID	Tokens
-	1	I, thought, about, naming, the, engine, CHEESE, but, I, could, not, explain, CHEE
	2	Fried, cheese, curds, cheddar, cheese, sale
	3	Tofu, also, known, as, bean, curd, may, not, pair, well, with, cheese.

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

ID	Tokens
1	i, think, about, name, the, engine, cheese, but, i, can, not, explain, chee
2	fried, cheese, curd, cheddar, cheese, sale
3	tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

2020/4/24 . The second contraction is the second contraction of 10

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

ID	Tokens
1	i, think, about, name, the, engine, cheese, but, i, can, not, explain, chee
2	fried, cheese, curd, cheddar, cheese, sale
3	tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

2020/4/24 . The second contraction is the second contraction of 11

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

ID	Tokens
1	i, think, about, name, the, engine, cheese, but, i, can, not, explain, chee
2	fried cheese, curd, cheeddar, cheese, sale
3	tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese

TF: Term frequency **Postings Lists** TF POS **OFF** ID Term Map (34, 39)2, 5 (6, 11), (28, 33) 2 cheese 3 12 (52, 57)curd ID TF POS **OFF** 2 1 3 (13, 17)3 (25, 28)6

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

 $\cdot 2020/4/24$. The state of t

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

ID	Tokens
1	i, think, about, name, the, engine, cheese, but, i, can, not, explain, chee
2	fried cheese, curd, cheeddar, cheese, sale
3	tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

2020/4/24 . The second contraction is the second contraction of 13

ID	Text
1	I thought about naming the engine CHEESE, but I could not explain CHEE.
2	Fried cheese curds, cheddar cheese sale.
3	Tofu, also known as bean curd, may not pair well with cheese.

ID	Tokens		
1	i, think, about, name, the, engine, cheese, but, i, can, not, explain, chee		
2	fried cheese, curd, cheddar, cheese, sale		
3	tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese		

- 1. The indexer splits a document into tokens.
- 2. The indexer transforms the tokens.
- 3. The location information of the term is inserted to a list, called a postings list.

 $\cdot 2020/4/24$. The state of t

Single-term query: cheese

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

2020/4/24 15

Single-term query: cheese

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

2020/4/24

Single-term query: cheese

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

 $\cdot 2020/4/24$

Single-term query: cheese

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

2020/4/24

Single-term query: cheese

Fried cheese curds, cheeddar cheese sale.

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

2020/4/24

Single-term query: cheese

Two-term query:

- cheese AND curd
- cheese OR curd

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese Two-term query:

- cheese AND curd
- cheese OR curd

Phrase query:

cheese curd

- 1. Document matching: iterating document IDs in a term's postings list.
- 2. Phrase matching: use positions to perform phrase matching.
- 3. Ranking: calculating the relevance score of each document, which usually uses TF.
- 4. Highlighting: highlighting queried terms in the top documents.

2020/4/24 . The state of the

Elasticsearch

Elasticsearch groups data of different stages into multiple locations.

For Wikipedia

- Term Index: 4 MB
- Term Dictionary: 200 MB
- Skiplist, ID-TF: 2.7 GB
- POS: 4.8 GB
- OFF: 2.8 GB

22

Elasticsearch

 $\cdot 2020/4/24$

Elasticsearch

A Term Dictionary entry contains

- metadata about a term (e.g., doc frequency)
- pointer pointing to document IDs and Term Frequencies (ID-TF)
- pointer pointing to positions (POS)
- pointer pointing to byte offsets (OFF).

2020/4/24 \cdots

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

2020/4/24

Design

Read amplification

In a word, read what we don't need

Design

Four techniques to reach our goals

Cross-stage data grouping

- reduce read amplification
- make I/O requests be large

Two-way Cost-aware Bloom Filter

- also reduce read amplification

Adaptive prefetching

- hide I/O latency

Trade Disk Space for I/O

- reduce read amplification

Cross-stage data grouping

In the Background part, we have known the process of a query

Term Map

cheese

curd

...

In single term query or phrase query, we all need to read 1-6

Postings Lists

.....

ID	TF	POS	OFF
2	1	3	(13, 17)
3	1	6	(25, 28)

Cross-stage data grouping

In the previous design, we need to read disk many times

For term 'USTC', IO count:3 or more (TF:Term Frequencies)

Cross-stage data grouping

WISER change the grouping way

For term 'USTC', IO count:1

USTC

Bloom Filter

- A type of Data Structure
- Use hash to test whether a element is in the set

At first, Bloom Filter is a bit-array containing m bits, and all bits are set to 0

Bloom Filter

- A type of Data Structure
- Use hash to test whether a element is in the set

$$S = \{x1, x2, \dots, xn\}$$

Using k individual hash functions to map the element

For example, if we want to present $x_1 \in BF$, $BF[h_i(x)]$, i = 1,...,k should be set to 1

Bloom Filter

- A type of Data Structure
- Use hash to test whether a element is in the set

$$S = \{x1,x2,...,xn\}$$

Using k individual hash functions to map the element

Check whether $y \in BF$: check $BF[h_i(y)], i = 1,...,k$, if $\forall i, BF[h_i(y)] = 1$, then $y \in BF$

Bloom Filter

- For phrase query like 'Distributed System'
- 100% recall but precision<100%
- For each term in each document
- In this case Bloom Filter aim at optimizing negative result
 - Two conditions: 1. the percentage of negative tests must be high
 - 2. Reading Bloom Filter must be faster than directly reading position

Using plain Bloom Filter

- Two conditions are conflict!
- One way is slow while another way is fast
- May be larger than positions

Using plain Bloom Filter

- Two conditions are conflict!
- One way is slow while another way is fast
- May be larger than positions

the percentage of negative tests must be high:

Bloom Filter should be large

Reading Bloom Filter must be faster than directly reading position:

Bloom Filter should be small

Two-way Cost-aware Bloom Filter ADSLAB

Using plain Bloom Filter

- Two conditions are conflict!
- One way is slow while another way is fast
- May be larger than positions

$$60KB < 50KB + 500KB$$

Using two-way Bloom Filter is better

Distributed

Filter after:60KB

Positions:50KB

Systems

Filter Before:600KB

Positions:500KB

600KB > 50KB + 500KB

Two-way Cost-aware Bloom Filter ADSLAB

Using plain Bloom Filter

- Two conditions are conflict!
- One way is slow while another way is fast
- May be larger than positions

Two-way doesn't work, cost-aware is added

Distributed

Filter before:600KB

Filter after:600KB

Positions:200KB

Systems

Filter before:600KB

Filter after:600KB

Positions:200KB

600KB > 200KB + 200KB

Two-way Cost-aware Bloom Filter ADSLAB

Allocate Bloom Filter

To further reduce the size of BFs, using bitmap-based data layout to store BFs

Using skip list to avoid reading large chunks of filters Using bitmap to reduce the space usage of empty BFs

Adaptive Prefetch

• Elasticsearch using native prefetch

Linux unconditionally prefetches data of a fixed size(default:128KB)

But data sizes are different

Cause high read amplification

Adaptive Prefetch

WISER adaptively prefetches frequently-used data to hide I/O latency

Adaptive: only when all prefetch zones in a query are larger than a threshold(e.g.,128KB), and divide prefetch zone to avoid access to much data at a time

Trade Disk Space for I/O

WISER compresses documents individually to reduce read amplification

4KB align(just as the size of one SSD page)

Impact on Indexing

• Focus on optimizing query processing instead of index creation

query processing is performed far more frequently

Cross-stage data grouping

Does not add overhead, data is just placed in different place

Adaptive prefetching

Employs existing info, does not add any overhead

Trading space for I/O

Adds I/O overhead for indexing because document need more space

Impact on Indexing

Bloom Filter

Requires extra computation: building BF

Although many filters are empty, the accumulative cost can be high.

Currently, haven't optimize the process of building

todo: 1. Parallelize the building process

2. cache the hash values of popular terms to avoid hashing the same term frequently

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

Implementation

• 11000 lines of C++ code (es is based on Java)

- Using mmap() to map data file
- Switch from class virtualization to templates
- Use case-specific functions to allow special optimizations
- Reusing preallocated std::vector to avoided frequent memory allocation

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

Setup

- 16 CPU cores
- 64-GB RAM
- 256-GB NVMe SSD
 - Peak read bandwidth is 2.0 GB/s
 - Peak IOPS is 200,000
- Ubuntu with Linux 4.4.0
- Use only 512 MB of memory (using a Linux container)

WSBench

- Dataset: Wikipedia
 - Total size: 18 GB
 - 6 million documents, 6 million unique terms
- Queries:
 - single term queries, "and" queries, "phrase" queries, real queries
 - vary term popularities in wikipedia

popularity level = document frequency = the number of documents in which a term appears

Decomposed Traffic of Single-Term Queries

- waste: the data that is unnecessarily read
- docid: the ideally needed data of document ID
- off: offset

- tf: term frequency
- ti: term index/dictionary
- es_no_pref: Elasticsearch without prefetch

Decomposed Traffic of Single-Term Queries

Elasticsearch needs three separate I/O requests:

1. Term index 2. ID, TF 3. Offsets WiSER only needs one I/O request!

Decomposed Traffic of Single-Term Queries

Elasticsearch needs three separate I/O requests:

1. Term index 2. ID, TF 3. Offsets WiSER only needs one I/O request!

Reduce read amplification!

I/O Traffic of Two-term Match Queries

I/O Traffic of Two-term Match Queries

Naive prefetch in Elasticsearch can increase read amplification significantly!

I/O Traffic of Phrase Queries

- es: Elasticsearch without prefetch
- wiser: WiSER without Bloom filters
- wiser_bf: WiSER with Bloom filters

2020/4/24 1.00

- es: Elasticsearch without prefetch
- wiser: WiSER without Bloom filters
- wiser_bf: WiSER with Bloom filters

WiSER without our Bloom filters demands a similar amount of data as Elasticsearch.

I/O Traffic of Phrase Queries

- es: Elasticsearch without prefetch
- wiser: WiSER without Bloom filters
- wiser_bf: WiSER with Bloom filters

WiSER with Bloom filters incurs much less I/O traffic!

2020/4/24 \cdots

Decomposed Traffic Analysis of Phrase Queries

- bloom: the ideally needed data of Bloom filters
- docid: document ID
- pos: positions
- tf: term frequencies

- es_no_pref: Elasticsearch without prefetch
- wiser: WiSER without Bloom filters
- wiser_bf: WiSER with Bloom filters
- ideally: byte-addressable

Decomposed Traffic Analysis of Phrase Queries

Reduce the traffic from positions and term frequencies!

Adaptive Prefetching

Trade Disk Space for Less I/O

Single Term Matching Throughput

- Throughput: QPS (Queries Per Second)
- es: Elasticsearch with prefetch (128 KB)
- es_no_pref: Elasticsearch without prefetch
- wiser: WiSER

Single Term Matching Latency

Single Term Matching Throughput

Due to WiSER's less efficient score calculation.

Single Term Matching Latency

- Throughput: QPS (Queries Per Second)
- es: Elasticsearch with prefetch (128 KB)
- es_no_pref: Elasticsearch without prefetch
- wiser: WiSER without Bloom filters
- wiser bf: WiSER with Bloom filters

Phrase Queries Latency

- Elasticsearch with OS prefetch (es) achieves the lower latency because the OS prefetches 128 KB of positions data and avoids waiting for many page faults.
- Although the latency of individual queries is lower, the query throughput is also lower due to the read amplification caused by prefetch.

Phrase Queries Latency

Throughput of Derived Workloads

- wiser: unknown
- wiser_al: unknown
- wiser al bf: unknown
- Normalized to the throughput of Elasticsearch without Prefetching

- For single-term queries, WiSER achieves as high as 2.2x throughput compared to Elasticsearch.
 - Around 60% queries in the real workload are of popularity less than 10,000.
- For multi-term match queries, grouped data layout also helps to increase throughput by more than 60%.
- For phrase queries, WiSER with Bloom filters increases throughput by more than 60%.

Scaling with Memory

Performance over a range of memory sizes

- es: Elasticsearch without prefetch
- wiser_base: WiSER with only cross-stage grouping
- wiser_final: fully-optimized WiSER

- single.high: high popularity level
- single.low: low popularity level

Scaling with Memory

Performance over a range of memory sizes

Due to the network issue of Elasticsearch.

Scaling with Memory

Performance over a range of memory sizes

- As expected, query throughput is higher, and latency is lower, when more memory is available.
- WiSER has much higher query throughput and much lower query latency than Elasticsearch across all workloads and memory sizes.
- WiSER's traffic sizes increase much slower than Elasticsearch's as we reduce memory sizes.

Outline

- Motivation
- Background
- Design
- Implementation
- Evaluation
- Conclusion

IO is the bottleneck

-2020/4/24

Read as Needed: Building WiSER, a Flash-Optimized Search Engine

Thanks & QA!

April 24th, 2020