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Motivation

/ USTC, CHINA

= ADSLAB

SSDs provide Many applications/systems have been

* High throughput optimized for SSDs

* Low latency * Key-value stores: RocksDb, Wisckey, ...
* High read bandwidth  Graph stores: FlashGraph, Mosaic, ...

* Inexpensive * File systems: SFS, F2FS, ...

But search engines are overlooked!
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/ UsSTC, CHINA

Motivation = ADSLAB

Search engines require

* Low data latency: queries are interactive

* High data throughput: engines retrieve info from a large amount of data
* High scalability: data grows over time

Just use more RAM?

* Cost prohibitive at large scale

* Data grows fast

* may waste bandwidth: rarely read and process 100GB/s
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Motivation = ADSLAB

Can search engines perform well with
a small memory and a fast SSD?

-®- es ¥ es_no_pref wiser

-
o
o

-
o

Read Traffic (GB)

ideally-needed

in-mem 16 X 4 2 1 0.5
memory size(GB)

—
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Inverted index = ADSLAB

ID Text

| thought about naming the engine CHEESE,
but | could not explain CHEE.

2 Fried cheese curds, cheddar cheese sale.

3 Tofu, also known as bean curd, may not pair well with cheese.

1. The indexer splits a document into tokens.
2. The indexer transforms the tokens.
3. The location information of the term 1s inserted to a list, called a postings list.
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Inverted index = ADSLAB

ID Text

1 | thought about naming the engine CHEESE,
but | could not explain CHEE.

2 Fried cheese curds, cheddar cheese sale.

3 Tofu, also known as bean curd, may not pair well with cheese.

ID Tokens

1 [, thought, about, naming, the, engine, CHEESE,
but, I, could, not, explain, CHEE

2 Fried, cheese, curds, cheddar, cheese, sale

3 Tofu, also, known, as, bean, curd, may, not, pair, well, with, cheese.

1. The indexer splits a document into tokens.
2. The indexer transforms the tokens.

3. The location information of the term 1s inserted to a list, called a postings list.
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Inverted index

¢t

ID Text
1 | thought about naming the engine CHEESE,
but | could not explain CHEE.
2 Fried cheese curds, cheddar cheese sale.
3 Tofu, also known as bean curd, may not pair well with cheese.
ID Tokens
1 i, think, about, name, the, engine, cheese,
but, i, can, not, explain, chee
2 fried, cheese, curd, cheddar, cheese, sale
3

tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese

1. The indexer splits a document into tokens.

2. The indexer transforms the tokens.

3. The location information of the term 1s inserted to a list, called a postings list.

2020/4/24
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Inverted index i é

USTC, CHINA

ADSLAB

ID Text
| thought about naming the engine CHEESE , ,
1 ) ’
but | could not explain CHEE. Postings Lists
2 Fried cheese curds, cheddar cheese sale. Term Map ID TF POS OFF
. . 1 1 7 (34, 39)
3 Tofu, also known as bean curd, may not pair well with cheese.
2 2 2,5 6, 11), (28, 33)
cheese
3 1 12 (52, 57)
ID Tokens
cud | = ......
1 i, think, about, name, the, engine, cheese, \
but, i, can, not, explain, chee ID TF POS OFF
2 fried, cheese, curd, cheddar, cheese, sale 1 3 (13, 17)
3 tofu, also, know, as, bean, curd, may, not, pair, well, with, cheese 3 1 6 (25, 28)

1. The indexer splits a document into tokens.
2. The indexer transforms the tokens.

3. The location information of the term 1s inserted to a list, called a postings list.
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Inverted index

ID Text

1 | thought about naming the engine CHEESE,

but | could not explain CHEE.

2 Fried cheese curds, cheddar cheese sale.

3 Tofu, also known as bean curd, may not pair well with cheese.
ID Tokens

' e oo e

2 fried curd, cheddar, sale

3 tofu, also, know, as, bean, curd, may, not, pair, well, with,

1. The indexer splits a document into tokens.

2. The indexer transforms the tokens.

USTC, CHINA

4 /_AD SLAB

Term Map

cheese

curd \

TF: Term frequency

Postings Lists

—
ID TF POS OFF
1 1 7 (34, 39)
2 2 2,5 6, 11), (28, 33)
3 1 12 (52, 57)
—
ID TF POS OFF
1 3 (13, 17)
3 1 6 25, 28)

3. The location information of the term 1s inserted to a list, called a postings list.

2020/4/24
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/‘ USTC, CHINA

Inverted index M= ADSLAB

ID Text POS: Position
1 | thought about naming the engine CHEESE, Postings Lists
but | could not explain CHEE.
2 Fried cheese curds, cheddar cheese sale. Term Map ID TF POS OFF
. . 1 1 7 (34, 39)
3 Tofu, also known as bean curd, may not pair well with cheese.
2 2 2,5 6, 11), (28, 33)
cheese
3 1 12 (52, 57)
ID Tokens
cud | = ......
1 i, think, about, name, the, engine \
but, i, can, not, explain, chee ID TF POS OFF
2 fried curd, cheddar cheese)sale 1 3 (13,17)
3 tofu, also, know, as, bean, curd, may, not, pair, well, with, 3 1 6 (25, 28)

1. The indexer splits a document into tokens.

2. The indexer transforms the tokens.
3. The location information of the term 1s inserted to a list, called a postings list.
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/‘ USTC, CHINA

Inverted index M= ADSLAB

ID Text OFF: Byte offset
| thought about naming the engine CHEESE , ,
1 . ’
but | could not explain CHEE. Postings Lists
[ \
2 Fried cheese curds, cheddar cheese sale. Term Map ID TF POS OFF
. . 1 1 7 (34, 39)
3 Tofu, also known as bean curd, may not pair well with cheese.
2 2 2,5 6, 11), (28, 33)
cheese
3 1 12 (52, 57)
ID Tokens
curd | @ ......
1 i, think, abqut, name, the, epgine \
but, i, can, not, explain, chee D TE POS OFF
2 fried curd, cheddar cheese)sale 1 3 (13,17)
3 tofu, also, know, as, bean, curd, may, not, pair, well, with, 3 1 6 (25, 28)

1. The indexer splits a document into tokens.

2. The indexer transforms the tokens.
3. The location information of the term 1s inserted to a list, called a postings list.

2020/4/24 14



Query processing = pADSLAB

Postings Lists Single-term query: cheese
Torm Map ID F | PoOS OFF
/ 1 1 7 (34, 39)
5 5 2.5 | (6 11), (28, 33)
cheese
3 1 12 (52, 57)
curd | @ ...
\\ D F | POS OFF
1 3 (13, 17)
3 1 6 (25, 28)

1. Document matching: iterating document IDs in a term’s postings list.

2. Phrase matching: use positions to perform phrase matching.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.
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Query processing

D

cheese

Term Map /

curd

I

Postings Lists

/‘ USTC, CHINA

_Z=ADSLAB

Vs

ID TF POS OFF
1 1 7 (34, 39)
2 2 2,5 6, 11), (28, 33)
3 1 12 (52, 57)
ID TF POS OFF
2 1 3 (13, 17)
3 1 6 (25, 28)

Single-term query: cheese

1. Document matching: iterating document IDs in a term’s postings list.

2. Phrase matching: use positions to perform phrase matching.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

2020/4/24
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Query processing g

Postings List . .
Postings Liste . Single-term query: cheese
Term Map ID TF POS OFF
}/ 1 1 7 (34, 39)
2 2 2,5 6, 11), (28, 33)
[ cheese
3 1 12 (52, 57)
. )
curd | = ......
\\. ID TF POS OFF
1 3 (13,17)
3 1 6 (25, 28)

1. Document matching: iterating document IDs in a term’s postings list.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.
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USTC, CHINA

Query processing ADELCAR

Postings Lists

Term Map ID TF POS OFF Score

1 1 7 (34, 39) XX

2 2 2,5 6, 11), (28, 33) XX

cheese
3 1 12 (52, 57) XX
curd \ ......

ID TF POS OFF
2 1 3 (13, 17)
3 1 6 (25, 28)

Single-term query: cheese

1. Document matching: iterating document IDs in a term’s postings list.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

2020/4/24
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Query processing i

Postings Lists Single-term query: cheese
Term Map ID TF POS OFF Score
1 1 7 (34, 39) XX
| 2 | 2 | 25| @839 highest |
cheese
3 1 12 (52, 57) XX AN
s R Fried cheese
\ curds, cheddar
ID TF POS OFF cheese sale.
1 3 (13, 17)
3 1 6 (25, 28)

1. Document matching: iterating document IDs in a term’s postings list.

2. Phrase matching: use positions to perform phrase matching.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.
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Query processing

Term Map

D

cheese

4

D

curd

N

Postings Lists

USTC, CHINA

ADSLAB

Vs

TF

POS

OFF

1

(34, 39)

2

2,5

(6, 11), (28, 33)

1

12

(52, 57)

TF

POS

OFF

(13,17)

(25, 28)

Two-term query:
e cheese AND curd
e cheese OR curd

1. Document matching: iterating document IDs in a term’s postings list.

2. Phrase matching: use positions to perform phrase matching.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

2020/4/24
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/ USTC, CHINA

Query processing = aADSCAR

Postings Lists

1 1 7 (34, 39)
2 2 ( 2,9 6, 11), (28, 33)

cheese
3 1 12 (52, 57)
cud | @ ......
\ Phrase query:
ID TF | POS OFF
1 ( 3) (13, 17) e cheese curd
3 1 6 (25, 28)

1. Document matching: iterating document IDs in a term’s postings list.

2. Phrase matching: use positions to perform phrase matching.

3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.
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Elasticsearch

2020/4/24

Term Index

/ UsSTC, CHINA

+Z=ADSLAB

Elasticsearch groups data of different stages into multiple locations.

Skiplist

ID-TF

@ oFF

For Wikipedia

Term Index: 4 MB

Term Dictionary: 200 MB
Skiplist, ID-TF: 2.7 GB
POS: 4.8 GB

OFF: 2.8 GB

22



USTC, CHINA

Elasticsearch = ADSLAB

Term Index maps a term to an entry in Term Dictionary.

Term Index
e Term Dictionary

Skiplist
/ 000" \

© ros @ oFF

2020/4/24 23



Elasticsearch = ADSLAB

(1) A Term Dictionary entry contains
Term Index * metadata about a term (e.g., doc frequency)
@ Term Dictionary * pointer pointing to document IDs and Term
oa Skiplist F r§quenci§s (ID-TF) 8

ID-TF * pointer pointing to positions (POS)

* pointer pointing to byte offsets (OFF).
© ros @ oFF
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esign (£EADSCAR
* Read amplification

In a word, read what we don’t need

Data wasted

Actually we fetch the
whole file from disk

1

Data wasted

File



Design

e

Four techniques to reach our goals

Cross-stage data grouping
- reduce read amplification
- make I/O requests be large
Two-way Cost-aware Bloom Filter
- also reduce read amplification
Adaptive prefetching
- hide I/O latency
Trade Disk Space for 1/0

- reduce read amplification

USTC,CHINA

ADSLAB



Cross-stage data grouping = pADSLAB

In the Background part, we have known the process of a
query

In single term query or phrase query,
we all need to read 1-6

o Postings Lists

Term Index Term Map ID TF POS OFF

Term chtlonary\ ] 1 7 (34, 39)
Skiplist '
/ 000" \ 2 2 | 25 | (611,833
cheese
3 1 12 (52, 57)
© ros ©orr
curd \ ......

ID TF POS OFF
2 1 3 (13, 17)
3 1 6 (25, 28)




Cross-stage data grouping = ADSLAB

2 o

In the previous design, we need to read disk many times

For term ‘USTC’, IO count:3 or more (TF:Term Frequencies)

Term Doc IDs Term Positions Term Offset

USTC Doc IDs Term Positions Term Offset

IDIIIDE Term Positions Term Offset

Another Term

File 1 File 2 File 3



Cross-stage data grouping ADSLAR

WISER change the grouping way

For term ‘USTC’, 10 count:1

File

Term Positions Term Offset DocIDs TF Term Positions Term Offset Doc IDs

USTC



Two-way Cost-aware Bloom Filter /= A o &73%

Bloom Filter

e A type of Data Structure
e Use hash to test whether a element is in the set

At first, Bloom Filter 1s a bit-array containing m bits,
and all bits are set to 0

loJo|o]ofo]o]ofofo]ofo]o




A uUsSTC, CHINA

Two-way Cost-aware Bloom Filter & A o ST°AR

Bloom Filter

e A type of Data Structure
e Use hash to test whether a element is in the set

S = {x1,x2,...,xn}
Using k individual hash functions to map the element

For example, if we want to present
x; € BF, BF[h,(x)],i = 1,...,k should

Xl X
[oT1]o 0|1|0|1|mm be set to 1




Two-way Cost-aware Bloom Filter /= A o &73%

Bloom Filter

e A type of Data Structure
e Use hash to test whether a element is in the set

S = {x1,x2,...,xn}
Using k individual hash functions to map the element

Check whether y € BF:
check BF[h(y)],i = 1,....k, if
Vi,BF[h(y)] =1, theny € BF

y, |
o foTo e o Ao a0




Two-way Cost-aware Bloom Filter /= A o &73%

Bloom Filter

* For phrase query like ‘Distributed System’

e 100% recall but precision<100%

 For each term in each document

e In this case Bloom Filter aim at optimizing negative result

Two conditions: 1. the percentage of negative tests must be high

2. Reading Bloom Filter must be faster than directly reading position



Two-way Cost-aware Bloom Filter 4= 5 p ST RS

Using plain Bloom Filter

 Two conditions are conflict!
 One way is slow while another way is fast

e May be larger than positions



Two-way Cost-aware Bloom Filter /= A o &73%

Using plain Bloom Filter

e Two conditions are conflict!

the percentage of negative tests must be high :

Bloom Filter should be large

Reading Bloom Filter must be faster than directly reading position :
Bloom Filter should be small



Two-way Cost-aware Bloom Filter & A o ST°AR
Using plain Bloom Filter

 One way is slow while another way is fast

Using two-way Bloom

60KB < 50KB + 500KB Filter is better

Filter after:60KB [ Positions:50KB ]
Systems [ Filter Before:600KB j [ Positions:500KB ]

600KB > 50KB + 500KB

Distributed




Two-way Cost-aware Bloom Filter /= A o &73%

Using plain Bloom Filter

 May be larger than positions ,
4 B » Two-way doesn’t work, cost-aware 1s added

Distributed ( Filter before:600KB ][ Filter after:600KB ][ Positions:200KB j
Systems [ Filter before:600KB ]E Filter after:600KB j[ Positions:200KB j

600KB > 200KB + 200KB




Two-way Cost-aware Bloom Filter /= A o &73%

-
* Allocate Bloom Filter
To further reduce the size of BFs, using bitmap-based data layout to store BFs

Skip List
__..-—""/
v = N

Bitmap | Filter Array | Bitmap | Filter Array | Bitmap | Filter Array |-.-

Using skip list to avoid reading large chunks of filters
Using bitmap to reduce the space usage of empty BFs



Adaptive Prefetch = ADSLAB

 Elasticsearch using native prefetch
Linux unconditionally prefetches data of a fixed size(default:128KB)
But data sizes are different
Cause high read amplification



Adaptive Prefetch ADSLAB

WISER adaptively prefetches frequently-used data to hide
I/0 latency

Prefetch size(16bit),File offset(48bit) (in Term Map)

Prefetch zone

md  skiplist DocIDs TF BF Term Positions Term Offset

What we are processing

Adaptive: only when all prefetch zones in a query are larger than a
threshold(e.g.,128KB), and divide prefetch zone to avoid access to
much data at a time



Trade Disk Space for I/0 = ADSLAB

WISER compresses documents individually to reduce read
amplification

4KB align(just as the size of one SSD page)

Docl Doc2 Doc3 Doc 4

Compress ¢ Compress

Need to fetch all data Only to fetch 3




Impact on Indexing = pADSLAB

* Focus on optimizing query processing instead of index
creation
query processing 1s performed far more frequently

e Cross-stage data grouping

Does not add overhead, data is just placed in different place
e Adaptive prefetching

Employs existing info, does not add any overhead
e Trading space for 1/0

Adds I/0 overhead for indexing because document need more space



Impact on Indexing = pADSLAB

* Bloom Filter
Requires extra computation: building BF

Although many filters are empty, the accumulative cost can be high.

Currently, haven’t optimize the process of building
todo: 1. Parallelize the building process

2. cache the hash values of popular terms to avoid
hashing the same term frequently
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* Implementation

2020/4/24 I



Implementation = ADSLAB

* 11000 lines of C++ code (es is based on Java)

e Using mmap( ) to map data file

e Switch from class virtualization to templates

» Use case-specific functions to allow special optimizations

» Reusing preallocated std::vector to avoided frequent memory allocation



Outline AT

e Evaluation
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/ USTC, CHINA

Setup = pADSLAB

16 CPU cores
64-GB RAM
256-GB NVMe SSD
e Peak read bandwidth 1s 2.0 GB/s
* Peak IOPS 1s 200,000
Ubuntu with Linux 4.4.0
Use only 512 MB of memory (using a Linux container)

2020/4/24 48



WSBench

/ USTC, CHINA

= ADSLAB

* Dataset: Wikipedia
* Total size: 18 GB
* 6 million documents, 6 million unique terms
* Queries:
* single term queries, “and” queries, “phrase” queries,
real queries
* vary term popularities in wikipedia

popularity level = document frequency = the number of documents in which a term appears

2020/4/24 49



Cross-stage Data Grouping = ADSLAB

Decomposed Traffic of Single-Term Queries

Popularity level: 1000 10000 100000
9+ B es_no_pref  wiser
o0
e 2.9x
&) .
E 6
O
F \ 4
o 3- ' I
0- HEw - I [ | I
6gtb” ©TE LS éé&ﬁﬁ VoEESE O0TE
® o © ®w o © ®» o O ®» o © ®w o ©
® O ® O © O @ O ®© O
2T 2T =0T =0T 2O
* waste: the data that 1s unnecessarily read  tf: term frequency
* docid: the ideally needed data of document ID < ti: term index/dictionary
« off: offset « es no pref: Elasticsearch without prefetch
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Cross-stage Data Grouping = ADSLAB

Decomposed Traffic of Single-Term Queries

Popularity level: 1000 10000 100000
9+ .es no_pref  wiser
o0
S 2.9x
&) .
e 6
O
H \ 4
- | I I
0- HEw - I | [ I — I - - _ -
6ntb VTEET QTELSS OTEELSS 0TEESS
®w o © w0 O w o © ® o © ® o ©
®© O ® O ®© O ®© O ®© O
=0 =0 =0 =0 = O

Elasticsearch needs three separate I/O requests:
l. Term index 2.1D, TF 3. Offsets

WiSER only needs one I/0 request!
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Cross-stage Data Grouping

/ USTC, CHINA

= ADSLAB

Decomposed Traffic of Single-Term Queries

Popularity level: 1000 10000 100000
__ 91 Bl es_no_pref  wiser
m
S 2.9x
2 6
o
I_ \ 4
o 3- ' I
0- HEw - I [ | I
&J'cu:tl: OTEE S aJ'c_Jtt:tt::- (D'C_J (D'C_J
® 0o O o © w o © ®» © ®» ©
© O © O © O © O ®© O
20T 2T 20T 2T = O
Elasticsearch needs three separate I/O requests: . .
I. Term index  2.1D, TF 3. Offsets Reduce read amplification!

WiSER only needs one I/0 request!
2020/4/24
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Cross-stage Data Grouping e e

I/O Traffic of Two-term Match Queries

Bl es| | es no pref  wiser

N W

N
4

o

Normalized Read Traffic

10 100 1000 10000 100000
Two Terms Workloads (Popularity Level)

2020/4/24 53



Cross-stage Data Grouping e e

I/O Traffic of Two-term Match Queries

Bl es| | es no pref  wiser

O
E N T N o—
= 37 o
5 @
32 .
foo) ™
S| BN EIN EH NE B
X o o
g 04\ =\l =)\ \l -\l =
2 10 100 1000 10000 100000

Two Terms Workloads (Popularity Level)

Naive prefetch in Elasticsearch can increase read amplification significantly!
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Two-Way Cost-Aware Bloom Filters

2020/4/24

O Traffic (GB)

I/O Traffic of Phrase Queries

_ =2 N
o o1 O O O

. wiser

wiser bf

USTC, CHINA

ADSLAB

1000 5000 10000
Popularity level

* es: Elasticsearch without prefetch
» wiser: WiSER without Bloom filters
* wiser bf: WiSER with Bloom filters

50000 100000
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Two-Way Cost-Aware Bloom Filters ADSTAR

I/O Traffic of Phrase Queries

m o(-
O 20
T 10
— -
o S}
— O_

1000 5000 10000 50000 100000
Popularity level

* es: Elasticsearch without prefetch
» wiser: WiSER without Bloom filters
* wiser bf: WiSER with Bloom filters

WiSER without our Bloom filters demands
a similar amount of data as Elasticsearch.
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Two-Way Cost-Aware Bloom Filters ADSTAR

I/O Traffic of Phrase Queries

@ 20- =

_‘9’ 15 - .wiser
% 101 wiser_bf
— -

o | I

— O_

1000 5000 10000 50000 100000
Popularity level

* es: Elasticsearch without prefetch
» wiser: WiSER without Bloom filters
* wiser bf: WiSER with Bloom filters

WiSER with Bloom filters incurs much
less 1/0 traffic!
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Two-Way Cost-Aware Bloom Filters USTC, CHINA

2020/4/24

ADSLAB

Decomposed Traffic Analysis of Phrase Queries

Popularity level: 1000 5000 10000
N B es_no_pref
a  wiser
o 97 '
=
o
l—
o

50000 100000

‘.'l:

bloom -

-gw
80.
o]

bloom 1
bloom

* bloom: the ideally needed data of Bloom filters
* docid: document ID

e pos: positions

e tf: term frequencies

wiser_bf ||
o 9 ' o 0
S 8 S 8
@) ®)]
© ©

es_no pref: Elasticsearch without prefetch
wiser: WiSER without Bloom filters

wiser bf: WiSER with Bloom filters
ideally: byte-addressable
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Two-Way Cost-Aware Bloom Filters ADSTAR

Decomposed Traffic Analysis of Phrase Queries

Popularity level: 1000 5000 10000 50000 100000

)
)
.es_no_pref
 wiser
7 Wiser_bf )
)
0- III I n I II I I
(2} n (72} (2}
28 b= 28 = @ %= 28 b=
ol & ol & Q ol
-c\_/ -c\_/ —— -c\_/

Reduce the traffic from positions and term frequencies!

10 Traffic (GB)
(6]

9
o
o

©

bloom 1
bloom -
bloom -
bloom

®]
©
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Adaptive Prefetching ADSLAB
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Trade Disk Space for Less 1/O 4= ADSLAB
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End-to-end Performance

Single Term Matching Throughput

= 301
-}
-g, 251 % 3 B es|  es_no pref  wiser
Exf 5§
= | ®©
3 P18 S o B
S 101 o § > <
. 5 &l 1 BET DEREREY
Z . .0 _O _
0_ e
1 00 1000 10000 1 00000

2020/4/24

Slngle Term Workloads (Popularity Level)

Throughput: QPS (Queries Per Second)
es: Elasticsearch with prefetch (128 KB)

es_no pref: Elasticsearch without prefetch
e wiser: WiSER

Normalized Median Latency

3.01

2.51

2.01

USTC, CHINA

ADSLAB

Single Term Matching Latency

B es

" es_no_pref

‘

wiser

ICD () ICD O O
- O O O O
- O O O
- O O
- O
Q

Workloads
(Popularity Level)

Normalized 95th% Latency (ms)

w
o

2.51
2.01
1.51
1.01@
0.51

0.0+

M es
" es_no_pref
wiser
w. -
m ii
<
O O O
\— O © O O
- O O O
- O O
- O
Qe
Workloads
(Popularity Level)
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End-to-end Performance e e

Single Term Matching Throughput Single Term Matching Latency
- 30- 3.01 M es —~ 3.01 M es
a oo : ) " es_no_pref £ " es_no_pref
S5, 251 2 ® . es | es_no_pref  wiser c 95 — > 25- —
=) S < 3 “ wiser — © ~ wiser
2 201 @ 8 S &
c I~ i = J
E 151 B c 2.0 g 2.0
3 3 3 Q 8 —
] 10{ 8 2 g 3 15 T 151
® ® Q! v o = o g
Z 0-_ T - T - T - T _ T E ﬁ © g g
10 100 1000 10000 100000 5 g S5 _
Single Term Workloads (Popularity Leve < g 4l Nie
o o o o o o o o
- O O O o -~
- O O O
- O O
=
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End-to-end Performance e e

Phrase Query QPS Phrase Queries Latency
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End-to-end Performance

Phrase Query QPS
. es . es_no_pref wiser wiser_bf
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Phrase Queries Workloads (Popularity Level)

* Elasticsearch with OS prefetch (es) achieves the lower
latency because the OS prefetches 128 KB of positions
data and avoids waiting for many page faults.

» Although the latency of individual queries is lower, the
query throughput is also lower due to the read
amplification caused by prefetch.
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End-to-end Performance e e

Throughput of Derived Workloads

B wiser | wiser_al  wiser_al_bf

* wiser: unknown

e wiser_al: unknown

e wiser al bf: unknown

* Normalized to the throughput of
Elasticsearch without Prefetching

Normalized Throughput
OO -=DNNW®W
O OMN O OO OO

overall single'_term muIti_'terms phréses
Derived Worklads

* For single-term queries, WiSER achieves as high as 2.2x throughput compared to Elasticsearch.

e Around 60% queries in the real workload are of popularity less than 10,000.
For multi-term match queries, grouped data layout also helps to increase throughput by more than 60%.
* For phrase queries, WiSER with Bloom filters increases throughput by more than 60%.
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Scaling with Memory A ADSTAS

Performance over a range of memory sizes
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(a) (b) (©) (d)
* es: Elasticsearch without prefetch * single.high: high popularity level

» wiser base: WiSER with only cross-stage grouping ¢ single.low: low popularity level
» wiser_final: fully-optimized WiSER
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Performance over a range of memory sizes
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Due to the network issue of Elasticsearch.
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Scaling with Memory ADSLAB

o

Performance over a range of memory sizes
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* As expected, query throughput is higher, and latency is lower, when more memory is available.
* WIiSER has much higher query throughput and much lower query latency than Elasticsearch
across all workloads and memory sizes.
*  WIiSER’s traffic sizes increase much slower than Elasticsearch’s as we reduce memory sizes.
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