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Motivation

2020/4/24

SSDs provide
• High throughput
• Low latency
• High read bandwidth
• Inexpensive

Many applications/systems have been 
optimized for SSDs
• Key-value stores: RocksDb, Wisckey, ... 
• Graph stores: FlashGraph, Mosaic, ... 
• File systems: SFS, F2FS, ... 

But search engines are overlooked!
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Search engines require
• Low data latency: queries are interactive 
• High data throughput: engines retrieve info from a large amount of data
• High scalability: data grows over time 

Just use more RAM? 
• Cost prohibitive at large scale
• Data grows fast
• may waste bandwidth: rarely read and process 100GB/s
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Can search engines perform well with 
a small memory and a fast SSD? 
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1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 
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Inverted index
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1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

TF: Term frequency
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Inverted index
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1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

POS: Position
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Inverted index
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1. The indexer splits a document into tokens. 
2. The indexer transforms the tokens.
3. The location information of the term is inserted to a list, called a postings list. 

OFF: Byte offset



15

Query processing
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1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese
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1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
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Score
xx
xx
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Single-term query: cheese
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Query processing
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1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Score
xx
highest
xx

Fried cheese
curds, cheddar 

cheese sale.

Single-term query: cheese
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Query processing
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1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese
Two-term query: 
• cheese AND curd
• cheese OR curd
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Query processing
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1. Document matching:  iterating document IDs in a term’s postings list.
2. Phrase matching: use positions to perform phrase matching.
3. Ranking: calculating the relevance score of each document, which usually uses TF.
4. Highlighting: highlighting queried terms in the top documents.

Single-term query: cheese
Two-term query: 
• cheese AND curd
• cheese OR curd
Phrase query:
• cheese curd
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Elasticsearch
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For Wikipedia 
• Term Index: 4 MB
• Term Dictionary: 200 MB
• Skiplist, ID-TF: 2.7 GB
• POS: 4.8 GB
• OFF: 2.8 GB

Elasticsearch groups data of different stages into multiple locations. 
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Elasticsearch
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Term Index maps a term to an entry in Term Dictionary. 
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Elasticsearch
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A Term Dictionary entry contains 
• metadata about a term (e.g., doc frequency) 
• pointer pointing to document IDs and  Term 

Frequencies (ID-TF)
• pointer pointing to positions (POS)
• pointer pointing to byte offsets (OFF). 
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Setup
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• 16 CPU cores
• 64-GB RAM
• 256-GB NVMe SSD
• Peak read bandwidth is 2.0 GB/s
• Peak IOPS is 200,000

• Ubuntu with Linux 4.4.0
• Use only 512 MB of memory (using a Linux container)
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WSBench
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• Dataset: Wikipedia 
• Total size: 18 GB
• 6 million documents, 6 million unique terms

• Queries:
• single term queries, “and” queries, “phrase” queries, 

real queries 
• vary term popularities in wikipedia

popularity level = document frequency = the number of documents in which a term appears
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Cross-stage Data Grouping
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Decomposed Traffic of Single-Term Queries 

• waste: the data that is unnecessarily read
• docid: the ideally needed data of document ID 
• off: offset

• tf: term frequency
• ti: term index/dictionary
• es_no_pref: Elasticsearch without prefetch 

Popularity level:

2.9x
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Decomposed Traffic of Single-Term Queries 

Popularity level:

2.9x

Elasticsearch needs three separate I/O requests: 
1. Term index     2. ID, TF     3. Offsets 
WiSER only needs one I/O request!
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Decomposed Traffic of Single-Term Queries 

Popularity level:

2.9x

Elasticsearch needs three separate I/O requests: 
1. Term index     2. ID, TF     3. Offsets 
WiSER only needs one I/O request!

Reduce read amplification!
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I/O Traffic of Two-term Match Queries 
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Cross-stage Data Grouping
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I/O Traffic of Two-term Match Queries 

Naive prefetch in Elasticsearch can increase read amplification significantly!
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Two-Way Cost-Aware Bloom Filters
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I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters
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Two-Way Cost-Aware Bloom Filters
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I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters

WiSER without our Bloom filters demands 
a similar amount of data as Elasticsearch.
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Two-Way Cost-Aware Bloom Filters
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I/O Traffic of Phrase Queries 

Popularity level

• es: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters

WiSER with Bloom filters incurs much 
less I/O traffic!
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Two-Way Cost-Aware Bloom Filters
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Decomposed Traffic Analysis of Phrase Queries 

Popularity level:

• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters
• ideally: byte-addressable

• bloom: the ideally needed data of Bloom filters
• docid: document ID 
• pos: positions
• tf: term frequencies
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Two-Way Cost-Aware Bloom Filters
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Decomposed Traffic Analysis of Phrase Queries 

Popularity level:

Reduce the traffic from positions and term frequencies!
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Adaptive Prefetching
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Trade Disk Space for Less I/O
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End-to-end Performance
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Single Term Matching Latency Single Term Matching Throughput 

• Throughput: QPS (Queries Per Second)
• es: Elasticsearch with prefetch (128 KB)
• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER
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Single Term Matching Latency Single Term Matching Throughput 

Due to WiSER’s less efficient score calculation.
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End-to-end Performance
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Phrase Query QPS Phrase Queries Latency 

• Throughput: QPS (Queries Per Second)
• es: Elasticsearch with prefetch (128 KB)
• es_no_pref: Elasticsearch without prefetch
• wiser: WiSER without Bloom filters
• wiser_bf: WiSER with Bloom filters
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End-to-end Performance
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Phrase Query QPS Phrase Queries Latency 

• Elasticsearch with OS prefetch (es) achieves the lower 
latency because the OS prefetches 128 KB of positions 
data and avoids waiting for many page faults.

• Although the latency of individual queries is lower, the 
query throughput is also lower due to the read 
amplification caused by prefetch.
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End-to-end Performance
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Throughput of Derived Workloads 

• For single-term queries, WiSER achieves as high as 2.2x throughput compared to Elasticsearch. 
• Around 60% queries in the real workload are of popularity less than 10,000.

• For multi-term match queries, grouped data layout also helps to increase throughput by more than 60%. 
• For phrase queries, WiSER with Bloom filters increases throughput by more than 60%.

• wiser: unknown
• wiser_al: unknown
• wiser_al_bf: unknown
• Normalized to the throughput of 

Elasticsearch without Prefetching 
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Scaling with Memory
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Performance over a range of memory sizes 

• es: Elasticsearch without prefetch
• wiser_base: WiSER with only cross-stage grouping 
• wiser_final: fully-optimized WiSER

• single.high: high popularity level
• single.low: low popularity level
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Scaling with Memory
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Performance over a range of memory sizes 

Due to the network issue of Elasticsearch.
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Scaling with Memory
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Performance over a range of memory sizes 

• As expected, query throughput is higher, and latency is lower, when more memory is available. 
• WiSER has much higher query throughput and much lower query latency than Elasticsearch 

across all workloads and memory sizes. 
• WiSER’s traffic sizes increase much slower than Elasticsearch’s as we reduce memory sizes.
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IO is the bottleneck

Cross-stage 
Data Grouping Two-Way Cost-Aware 

Bloom Filters Adaptive Prefetching

Trade Disk Space 
for Less I/O

Reduce read 
amplification

Reduce read 
amplification

Reduce I/O 
traffic

Reduce I/O 
traffic

Reduce I/O 
traffic for phrase Reduce latency

Improve performance (throughput)
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