Storage Systems are Distributed Systems
(So Verifty Them That Way!)

OSDI 2020

Travis Hance (CMU) Andrea Lattuada (ETH) Chris Hawblitzel (MSR)
Jon Howell (VMR) Rob Johnson (VMR) Bryan Parno (CMU)

What is Verification?

* Mathematical proof that a program is correct.
* Proof is checked by a computer (the verifier).

/ Key-value dictionary \ Key-value dictionary
implementation specification

 Complex data structure

e Stated simply and mathematically
* Handle edge cases

e 100s or 1000s of lines of f : Key — Value
code | | |

Put(k: Key, v: Value):
E;f% f := f[k » v]
Get(k: Key):

\\\\¥ 4//// return f (k)

Verifying Persistent Disk Storage Systems

ﬂersistent key-value store\

implementation

e Complex data structure
* Handle edge cases

. IB¥Ser 1000s of lines of
code | | |

* Handle asynchronous disk access
* |O-efficient data structure
e Caching (eviction policy, etc.

« Crash safety &
e CPU-efficiency \/

Persistent key-value store
specification

e Stated simply and mathematically

f . Key — Value

Put(k: Key, v: Value):
f = fl[k » v]

Get(k: Key):
return f (k)

* Expose a way for user to confirm data
has been persisted
e Data persistence on crash

Contributions

 VeriBetrKV: a complex, verified storage system

* Crash-safe key-value store based on the B&-tree, an established, state-of-the-
art, 10-efficient, write-optimized data structure

* Written in Dafny (compiled via C++)
* General methodology for verifying asynchronous systems

* Linear types combined with Dafny’s dynamic frames to improve the
experience of verifying efficient, imperative code

Modeling Disk Systems

* We need a clean & flexible way to encode environmental assumptions.
* How does the disk work?
* Assumptions about asynchronicity?
* What failure scenarios are considered?

* Observation: General problem across asynchronous systems
* IronFleet (2015) uses state machines to model networked distributed systems.
* We generalize and apply to storage systems.
* No need for a domain-specific logic!

Modeling Asynchronous Systems

Host Host Host Host
Network E
system state
machine
Host Host Host Host

- -

- -
- -
- B
- o

Host state
_ Host ‘ Host
machine

-

Modeling Asynchronous Systems

* Templated state machine NetworkSystem<Host> is defined in terms
of Host state machine.

* This state machine definition encodes all environmental
assumptions!
* Packet delivery
* Packet reordering
* Packet duplication

* We demonstrate that we can use this approach for other
asynchronous systems, like our disk system.

Modeling disk systems

<>

DiskSystem<Host>

Host

Modeling disk systems

& Host step &
DiskSystem<Host> ‘

Host Host

\ _-
\ \ _ -
‘\ ‘\ ,,—"’
\\ \\ ’—,,,—’
Host ‘ Host

Host

Modeling disk systems

DiskSystem<Host>

<>

Read command

R

Host

Disk step

—

<>

Block of data

Host

10

Modeling disk systems

DiskSystem<Host>

<>

Block of data

Host

Crash &
reboot
step

—

<>

Host

/

Initial Host state

11

NetworkSystem<Host>
Host Host
Host Host

Network delivering packets

Packet reordering
Packet duplication

DiskSystem<Host>

<>

Host

Disk

|O queue

Command reordering

Host failure

Host reinitialization

(Limited) spontaneous data corruption

Modeling Disk Systems

 Method: encode any environmental assumptions in the definition of
templated state machine System<Host>

 Natural extension of IronFleet’s method

* Clean split between environmental assumptions (System) and
implementation details (Host)

* Environmental assumptions easy to read and understand

Verifying Persistent Disk Storage Systems

ﬂersistent key-value sto

implementation

 Complex data structure
* Handle edge cases

e

* 1000s of lines of code R
| | |

* Handle asynchronous disk access
* |O-efficient data structure
* Caching (eviction policy, etc.

* Crash safety
* CPU-efficiency

Persistent key-value store
specification

Stated simply and mathematically

<=9

f . Key — Value

Put(k: Key, v: Value):
f = fl[k » v]

Get(k: Key):
return f (k)

Expose a way for user to confirm data
has been persisted
Data persistence on crash

Application Spec

System state
machine

Host model state
machine

{a:1,b:2}

{a:1,b:3}

S—

Host

State machine
refinement

15

Application Spec {a:1,b:2} {a:1,b:3}

State machine
\/ ™ refinement

System state

machine
Host Host o

Host model state \ \ —_—

machine | Host Host
* Bé-tree operations
e Caching logic
* Journal logic S— Floyd-Hoare logic

method insert(key: Key, value: Value)
. {

Implementation code // actual runnable code here

}

Writing Efficient, Verified Code

Host model state —

machine Host ‘ Host

* Bé-tree operations
e Caching logic

* Journal logic S— Floyd-Hoare logic
method insert(key: Key, value: Value)

. {
Implementation code // actual runnable code here

}

 Goal: efficient, runnable code that implements this state machine.
 Imperative code with mutable update-in-place data structures

Memory Aliasing

* Dafny uses a memory-reasoning strategy called dynamic frames.
* This strategy requires explicit aliasing information.

class Point { method main()

var x: int; {

var y: int; var a := new Point();
} foo(a, a);

}

method foo(a: Point, b: Point)
modifies a, b
requires a !=

{

b

a.x
b.x :

assert a.x == 1;

Memory Aliasing

* Manually adding aliasing conditions is cumbersome.
* Number of pairwise conditions grows quadratically.
* Handling deep data structures requires reasoning about sets of objects.

predicate ReprInv()
reads this, persistentIndirectionTable, ephemerallndirectionTable,
rozenIndirectionTable, 1lru, cache, blockAllocator
static predicate {:opaque} ReprSegDisjoint(buckets: seq<MutBucket>) Repr ()
reads set i | @ <= i < |buckets| :: buckets[i]
{ & persistentIndirectionTable.Repr !! ephemerallndirectionTable.Repr

forall i, j i1di i
bucketi[twostate lemma SplitChildOfIndexPreservesWFShape(node: Node, childidx: int)

/...

requires unchanged(old(node.repr) - {node, node.contents.pivots, node.contents.children,
node.contents.children[childidx]})

/...

requires node.contents.children[childidx].repr <= old(node.contents.children[childidx].repr) pr
/...

requires fresh(node.contents.children[childidx+1l].repr - old(node.contents.children[childidx].repr))
requires node.contents.children[childidx+1].height == old(node.contents.children[childidx].height)
requires DisjointSubtrees(node.contents, childidx, (childidx + 1))

requires node.repr == old(node.repr) + node.contents.children[childidx+1].repr

ensures WFShape(node)

tionTable.Repr
ionTable.Repr

ndirectionTable.Repr)

Memory Aliasing

* We could just write immutable code instead ...

datatype Point(x: int, y: int)

* This makes verification much easier.
method ;09<t * But copying objects is slower,
a. oint, .
b: Point) especially large sequences.
returns (a': Point, b': Point)
{
a' = a.(x :=1);
b' (x

assert a'.x

}

Faster Code with Linear Types

 What if we could:

* Verify objects as if they were immutable,
* But have the compiler generate code with in-place updates?

e Use a linear type system to enforce exclusive ownership of objects.

Faster Code with Linear Types

datatype Point(x: int, y: int) method main()
{

method foo(linear var a := Point(0, 0);

linear a: Point, foo(a, a);
linear b: Point) }
returns (linear a': Point,

linear b': Point)

{
a' = a.(x
b' : . (X

assert a'.x

}

Adding Linear Types to Dafhy

 Aliasing errors are now immediate type errors.
* Inspired by prior verification work, Cogent (2016)

* Production languages like Rust also demonstrate that linear semantics
are feasible for a lot of systems code.

 When linearity is too constraining, we can still fall back to dynamic
frames and theorem-proving.

* Enables code not expressible in a strict linear type system
* Used in key places in VeriBetrkV

Outline = ADSLAB

. Evaluation
> Conclusion

6/9/2021 1

Outline = ADSLAB

6/9/2021 2

VeriBetrKV(Verified —) o o e

/= ADSLAB
Component
 free
- On disk ' B 1 1
- In BlockCache(Memory) .ﬁu n @ ‘EIJ n a m I ty
» Journal | | .
- Ondisk crash safety

- In Memory

6/9/2021

VeriBetrKV ADET R

.| buffered KV
® pivot key
Vv key-value

B¢ tree —

) ()
vy -

6/9/2021

4

http://supertech.csail.mit.edu
/papers/BenderFaJa41 5.pdf

VeriBetrKV (Verified) ADSTRS

Synchrounization

* Write dirty nodes from BlockCache to disk
* Write journal from memory to disk

-

6/9/2021

VeriBetrKV ADST R

Architecture
BlockCache

Memory

Disk

| H

6/9/2021 :

-. -
!
o -

VeriBetrKV

/ UusTC, CHINA

e ADSLAB

* Refine:

- Given a concrete state machine T,,,,. and an abstract state machine
Tabs:

* Teone refines T,

- iff every execution of T,,,, can be mapped to a possible execution of
Tabs

* Refinement adds detail

VeriBetrKV ﬁADE‘fE’KE

Proof

* Refinement for nested model:
-If A<T> refines B<T> and a refines b,
- then A<a> refines B

VeriBetrKV

Proof

UsTC, CHINA

S nADSLAB

* The authors build several levels of state machines to
describe the asynchronous environment.

* They used modular Hoare logic to prove each step.

refines
e

refines
—)

4)
Abstract

State
Machine

o J

refines
—)

VeriBetrKV AD ST R

Modularization

« Seperate the reasoning about (Assumption: the journal and

: subsystem are not in the same block)
- Journal subsystem

Concrete Abstract
State
Machine e
Machine

VeriBetrKV = A ST R

Prooft: Figure out Spec first

 We use a state machine to describe how data is recovered from
crash.

* We call it CrashSafe<T>, where T is a nested state machine that
satisfies the functionality of K-V storage system(with no crash)

crash / sync start

ephemeral
<T>

recover / sync_end

11

VeI' iBetI'KV /.P USTC, CHINA

Z=ADSLAB
Proof : model Bf tree and find out T [Siathsatecmapail
* For an in-memory with no crash, its spec is a Map

* Tree structure + abstract node(infinite map) = abstract
 Defining node data structure(e.qg. finite bucket) =

f : Key — Value
Put(k: Key, v: Value):
H”"!H AN

_, N Get(k: Key):
) UL -_’ rrery return f(k)

refines | Abstract | refines
5 State —

Machine

VerlBetI‘KV /.P= ADUSSERE
Proof: B¢ tree 10

* We define the state machine of BlockCache<T> and Disk<T> to
describe their action, where T is the state machlne of data

structure they stores. BlockCache<T> Dick<T>
i BlockCache : - b 7 -
< B¢ tree > refines
- 7 (Note that
< - B¢ tree
Disk N refines Map)
< B¢ tree > 13

~N— @ @@

VeriBetrKV

Proof: Journal_lO(similar)

s

-

JournalCache

~

v

—
N

———
R

N—

Disk

<Journal>

__—

refines

USTC,CHINA

ADSLAB

14

VeriBetrKV AD ST R

Proof: So far, we have refinement

BlockCache |
< Bf tree > refines

— —

Disk)
i refines

[JournalCache]]

refines
— —

Disk o=
<Journal>

15

VeriBetrKV AD ST R

Proof: Let’s refine Cache and Disk respectively

refines

< Bf tree >
Disk
< Bf tree >

[JournalCache } '

refines [

m—

BlockCache J

Disk _
<Journal>

(trusted) 16

VeriBetrKV AD ST R

Proof: Overall structure

refines [apstract | refines
— oo |

refines
refines E!o-ckcmha

— <8 tree > ‘ refines
S— *“

—

-:B'tm:-

Jnumalﬂan!u

refines
Dld:

(trusted) *:Jnum:l}

17

Outline = ADSLAB

& cwevwton |

6/9/2021 18

Evaluation

/ UusTC, CHINA

Z=ADSLAB

YA [y) . i

A\ IN T M t o aValkB e 7% VI y L 2VWabhzE e

VVEe TOCLIS O] /7 DOINTS

VWV S AN AD J AL Ld WA W 1100
p

* Does the automation tool improve developer
experience?

* btw, can we deliver the performance gains of
write optimization?

19

/ UusTC, CHINA

Evaluation M= ADSLAB

Developer experience:

bld(y.data) && y.data == old(x.data);

.= X.data + y.data;
.= X.data - y.data;
Xx.data - y.data;

UsTC, CHINA

Evaluation = ADSCAR
Developer experience:

Major component spec 1mpl proof
Map, CrashSafe(Map) | 283 82 818
AbstractBftree 0 70 2024
B*tree 0 137 7079
Composite ViewMap 0 26 823
B*treeIOSystem 0 246 6510
Concrete]lOSystem 270 68 2887
implementation code 180 5380 21697 | 4:1
libraries

71

Compared to IronFleet, it can scale to a larger system

Evaluation = ADSLAB

Dynamic frames vs Linear type system

hash table search tree

Aliasing reasoning | impl proof | impl proof
Dynamic frames 289 [1678]| 289 [2220]
Linear type system | 289 [1063|| 373 |153]

Linear typing reducs the proof burden by 31-37%

22

UsTC, CHINA

Evaluation = ADSCAR
performance: random write

105 = ;'5: BerkeleyDB
2) B | = 74 VenBetrKV-DF
8 g L 2 o S VeriBetrK'V
% 10 E- o —g @':‘- E=3 RocksDB
= = E =
HDD = - ' SSD -
E 10° E g 5
O "= O

Load
(from YCSB A) (from YCSB A)

23

UsTC, CHINA

ADSLAB

v

Evaluation

BerkeleyDB
VeriBetrK V-DF

VeriBetrKV
RocksDB

query

performance

HDD

F

D

C
YCSB Workload

B

A

F

D

HHL

C
YCSB Workload

puoIags EEE.E&G

24

Outline = ADSLAB

e/ Conclusion

6/9/2021 25

Conclusion

/ UusTC, CHINA

Z=ADSLAB

* general methodology for verifying asynchronous
systems from prior work.

* a Key-Value storage system that advances towards
performance of state-of-the-art non-verified systems,
with much stronger guarantees

