
Metadata Load Balance:

Validation, Modeling, Solution

Shared by Yiduo Wang, Daniel Shao

2020/07/16



2

Metadata in CephFS

Clients

MDSs

Data Servers

①

②

③

④

Necessity
Perform metadata ops first

Account
More than 50%

Overhead
Exceeds Data ops on 

lots of small files

Access process of CephFS



3

Multi-MDS Development

• Single MDS is insufficient

• Hash partition will destroy the locality

• Dynamic adjusting namespace relevant performance



4

Ceph Metadata Balance Flow 

1 Load statistics

2 Role determination 

3 Directory selection

4 Directory export

Frag’s popularity & System info

Select part MDS as exporter

Amount: My_load – Avg_load

Select part hot fragments

Hot: Accessed amount(decayed) is high

Migrating selected fragments

Irrevocability



5

Measuring load imbalance

• Using coefficient of variation as imbalance factor

• Definition:
• n: MDS number

• li: load of MDSi

• ҧ𝑙 : Avg load

• I: imbalance factor
𝐼 =

σ𝑖=1
𝑛 𝑙𝑖 − ҧ𝑙 2/ 𝑛 − 1

σ𝑖=1
𝑛 𝑙𝑖/n



6

Workload Classification

AI pre-training
Scanning, flat directory structure

Tar Linux kernel
Scanning, complex directory structure

Zipfian
Skewed access, flat directory structure

Web Access
Skewed access, complex directory structure

Compilation
Skewed access, complex directory structure, with data ops & computing



7

Policy Classification

Ceph-Original

Native Ceph migration strategy + Default parameters

Ceph-Mantle

Mantle enabled + Greedyspill.lua policy

Dynamic hashing

Hashing hot fragments across MDSs

Manual Tuning
Manual pin or hash namespace across cluster

Without migration



8

Experiment Setup

Metadata nodes 5

Client nodes 5

Metadata servers 5

Client threads 100

OS Kernel CentOS 7.6.1810

CPU Intel E5-2650 v4 @ 2.20GHz

Memory 64GB

Network 56Gbps InfinitiBand



9

Evaluation: Imbalance Factor

AI pre-training Tar Web Access Zipfian Compilation



10

Evaluation: Imbalance Factor

AI pre-training Tar Web Access Zipfian Compilation

Metadata imbalance is existed & common



11

Evaluation: IOPS

0

10K

20K

30K

40K

50K

60K

70K

80K

AI Tar Zipfian Web Compilation

Avg-IOPS-Runtime Ceph_Original

Ceph_Mantle

Dynamic Hash

Manual Tuning



12

0

10K

20K

30K

40K

50K

60K

70K

80K

AI Tar Zipfian Web Compilation

Avg-IOPS-Runtime Ceph_Original

Ceph_Mantle

Dynamic Hash

Manual Tuning

Evaluation: IOPS

Imbalance harm performance



13

Analysis

• Why does the one-for-all policy does not fit well with 
four workloads?

• AI pre-processing

• Tar

• Zipfian

• Web access



14

Case study: Tar

• Problem:
• Always choosing hot directories, 

which are not visited later.

• Lessons:
• Popularity is not everything.

• Hot directories do not mean the future.



15

Case study: Zipfian

• Problem:
• Migrated hot directories are found hot 

again in the importer’s view and 
migrated again.

• Lesson:
• Popularity-based policy should be 

global.



16

Optimization Goals

Imbalance Factor Minimization

Negative Impact Minimization

Aggregated Throughput Maximization



17

Preliminary Solutions

We use several preliminary solutions to solve this problem.
1. Dynamic Hashing

2. Pinning directories according to client IDs

3. Foreseeing dividing the directory tree according to its trace



18

Dynamic Hashing

• Policy:
• Based on popularity

• Select role based on hashing

• Select only hot directories

• No changes to migration

• Evaluated on Zipfian workload



19

Pinning due to client IDs

• Policy:
• Care nothing about popularity and MDS 

load

• Select roles by first level directory name

• Whole subtrees are migrated

• No changes to migration

• Evaluated on Zipfian workload



20

Foreseeing Dividing

• Policy:
• Care nothing about popularity & MDS load

• Cut the directory tree into several 
fragments and assign them to MDSs based 
on popularity in the trace

• No changes to migration

• Evaluated on Zipfian workload



21

Summaries & Plans

• Summaries:
• Factors we need to consider besides popularity:

• There’s no policy for all workloads.
• Specially optimized policy for all workloads

• Adaptive policy

• Plans:
• Formalize the multi-objective optimization problem

• Workload-aware policy decision


