
Balanced Parity Update Algorithm with Queueing
Length Awareness for RAID Arrays

Youxu Chen1,2, Yinlong Xu1,3, Yongkun Li1,2, Jun Xu4
1. School of Computer Science and Technology, University of Science and Technology of China

2. AnHui Province Key Laboratory of High Performance Computing, Hefei, China
3. Collaborative Innovation Center of High Performance Computing, National University of Defense Technology

4. Shannon Laboratory, Central Research Institute, Huawei Technologies Co., Ltd., China
Email: cyx1227@mail.ustc.edu.cn, {ylxu, ykli}@ustc.edu.cn, xujun09@huawei.com

Abstract—In parity-based RAID arrays, to update a data
chunk, the corresponding parity chunk(s) must be updated
accordingly so as to keep data consistency and availability. To
achieve this, either read-modify-write (RMW) or read-construct-
write (RCW) could be used. Traditional parity update algorithm
always selects the one requiring fewer pre-reads so as to reduce
the total number of I/Os, but it may aggravate the skewness of
I/O queues on disks, and thus degrades the system performance.

In this paper, we propose a balanced parity update algorithm
with queueing length awareness, BPU, which takes the number
of pre-reads, the skewness of I/O queues on disks, and real-
time workload into consideration when selecting RCW or RMW
to update parity chunks. We implement a prototype system with
BPU to evaluate its performance. Experimental results show that
the length of I/O queues on disks in a RAID array may be highly
skewed when using traditional parity update algorithm, and thus
severely degrades the system performance. With BPU, we can
reduce the average response time by up to 10%. We also study
the performance of BPU under different system configurations,
and provide multiple insights for adjusting the parameters of
BPU so as to optimize its performance.

Index Terms—Parity Update; RAID; Queue; Skewness; Per-
formance

I. INTRODUCTION

Due to the development of data collecting devices, massive
data are produced from many areas, such as scientific research,
engineering applications and people’s daily life. The fast
growth of data size makes a single storage device be hard
to provide enough storage capacity and I/O bandwidth as re-
quired. Redundant Arrays of Inexpensive Disks (RAID) [11, 6]
provides a cost-effective approach to meet the requirement
of large storage space and fault tolerance with commercial
storage devices, such as traditional hard-disk drives (HDDs)
and flash-based solid-state drives (SSDs) [3, 5].

Along with the increase of data volume, modern storage
systems may use hundreds or thousands of inexpensive disks.
As a result, system component failure like device failure
becomes a very common behavior [12, 15]. To prevent data
loss, data redundancy is introduced into large scale storage
systems. N-way replication [17] and erasure code [8, 13] are
two common approaches to provide data redundancy. With N-
way replication, a data chunk is replicated N copies and stored
in N different disks. For an (n, r) erasure code, r data chunks
are encoded into n encoded chunks such that all data chunks

can be decoded from any m (r ≤ m < n) ones of the encoded
chunks, and so the erasure code prevents the loss of any n−m
encoded chunks.

Erasure codes can provide the same data availability with
N-way replication, while only incurs an order of magnitude
smaller storage overhead, so they are often deployed in RAID
arrays. The commonly used erasure codes are systematic and
maximum distance separable (MDS). Examples of erasure
codes include RAID-5 against single failure; RDP [7], EVEN-
ODD [4], and X-code [18] for RAID-6 against double failures,
as well as Cauchy Reed-Solomon (CRS) [14] codes against
any number of disk failures.

In a systematic and MDS code, apart from r data chucks,
other n− r encoded chunks are called parity chunks. Each of
the parity chunks is the XOR-sum of some data chunks. To
keep data consistency and data availability, the parity chunks
need to be updated when any of the data chunks that are used
to generate the parity chunks is updated. To update a parity
chunk, there are two choices, read-modify-write (RMW) and
read-construct-write (RCW). For performance consideration,
traditional parity update algorithm works as follows. If a parity
chunk is to be updated, the system first determines all the
data chunks that are encoded into this parity chunk, and then
checks which data chunks are already in memory and which
need be read from disks (namely pre-read). After that, the
system calculates the number of pre-reads required by RMW
and RCW for updating the parity chunk, and then chooses the
one with fewer pre-reads. RAID4S-modthresh [16] modifies
the algorithm in RAID4S scheme by choosing RMW with
a higher probability than RCW for small-writes, while still
sticking to the traditional algorithm for large-writes.

We note that the existing parity update algorithm does not
consider the dynamics of I/O queues on different disks in a
RAID array, so it may make the distribution of the length
of I/O queues on different disks be highly skewed, and thus
degrades the system performance as the disk with the longest
I/O queue may become the bottleneck. From our experiments,
the skewness does exist in many I/O traces, and sometimes
the performance degradation is also severe. This motivates us
to explore a parity update algorithm by taking the state of
I/O queues on a RAID into consideration, so as to lighten
the skewness of I/O queues by balancing the workload on all

disks while updating parity chunks. In a summary, we make
the following contributions in this paper.

• We propose a balanced parity update algorithm, BPU,
which further takes the state of I/O queues and online
I/O workload into consideration when selecting RMW
or RCW for parity update. In BPU, we set multiple
thresholds to measure the number of pre-reads required
for updating a parity chunk, the degree of the skewness of
I/O queues, and the online I/O workload, and then select
RCW or RMW according to these thresholds and real-
time I/O workload so as to achieve a higher load balance
and lower write overhead for parity update.

• We implement a prototype system by modifying the
Linux kernel 4.0.2, and deploy RAID-5 with BPU on
a server with nine SSDs. Our experiments show that the
skewness among I/O queues does exist while updating
parity chunks and it degrades system performance.

• We conduct extensive experiments on the prototype sys-
tem with real-world traces. Our experiments show that
BPU reduces the average response time by up to 10%
compared to traditional parity update algorithm. We also
provide multiple insights for regulating the parameters to
optimize the performance of BPU.

The rest of this paper is organized as follows. In Section
II, we present the background of RAID with erasure code
and two parity update methods. In Section III, we motivate
the design of BPU. We present the design details of BPU
and the prototype implementation in Section IV and Section
V, respectively. We evaluate the performance of BPU with
real-world workloads in SSD RAID-5 system in Section VI.
Finally, we conclude this paper in Section VII.

II. BACKGROUND

A. RAIDs

A RAID consists of multiple physical disks to provide large
storage capacity and high parallel I/O bandwidth. Disks in a
RAID system are organized into many stripes, each of which
consists of multiple logical units, named chunks. Chunks in a
stripe are distributed across disks, with one on each. RAID
provides high parallel I/O bandwidth because multiple I/O
operations can be concurrently executed on different disks.
Besides, RAID can also provide data redundancy to against
disk failure. The commonly used approaches for data redun-
dancy are mirroring data from one disk to another disk or
encoding data chunks into parity chunks.

RAID-5 and RAID-6 are two commonly used RAIDs to
against disk failures. RAID-5 tolerates one disk failure with
XOR encoding, while RAID-6 tolerates two disk failures
with different codes, such as RDP, P-code, EVEN-ODD and
CRS code. In the following, we call the set consisting of a
parity chunk and the data chunks that are used to encode this
parity chunk the parity chain of this parity chunk. In practical
implementation, the parity chunks are rotationally distributed
among all disks for load balance consideration.

B. Read-modify-write and Read-construct-write

In RAID systems, the parity chunk needs to be updated
synchronously, if any data chunk in its parity chain is updated,
so as to ensure data consistency and data availability. There are
two methods for parity updating, read-modify-write (RMW)
and read-construct-write (RCW).

RMW works as follows. When some data chunks in a parity
chain are updated, it first reads the old data chunks that are
to be updated and the old parity chunks in the same parity
chain from disks into memory. Because the newly updated data
chunks are already in memory, they can be accessed directly
from memory. Then, RMW updates the parity chunk according
to Equation (1). Finally, the new parity chunks and new data
chunks are written back into disks synchronously.

Paritynew = Dataold ⊕ Parityold ⊕Datanew. (1)

Unlike RMW, RCW uses the updated data chunks and other
data chunks that are not updated but belong to the same parity
chain with the updated data chunks to reconstruct a new parity
chunk. Therefore, RCW just reads all non-updated data chunks
in the parity chain from disks into memory, and then generates
new parity chunks by XOR-summing these non-updated data
chunks and newly updated data chunks with Equation (2). At
last, new data chunks and new parity chunks are written from
memory into disks.

Paritynew = Datanon−updated ⊕Datanew. (2)

Note that both RMW and RCW need extra pre-read requests
to read data/parity chunks from disks into memory to prepare
the updating of parity chunks. In the following of this paper,
we shortly name the number of data/parity chunks that need to
be read from disks into memory to update a parity chunk as the
number of pre-reads. Pre-read introduces extra I/O workload
on a RAID and degrades the system performance, especially
for systems with many random small writes.

III. MOTIVATION

In this section, we first introduce the traditional parity
update algorithm for RAIDs with erasure codes, then analyze
the skewness of I/O queues on all disks, and finally present
the motivation of our new algorithm.

A. Traditional Parity Update Algorithm

As stated in Section II-B, there are two ways, RMW and
RCW, to update parity chunks. For performance consideration,
the traditional parity update algorithm firstly calculates the
number of pre-reads required by RMW and RCW, and then
selects the one with fewer pre-reads so as to reduce the I/Os.

Fig. 1 shows an example to illustrate traditional update
selection algorithm. In Fig. 1, a stripe consists of four da-
ta chunks A,B,C,D and one parity chunk P , which are
distributed on disks D0, D1, ..., D4. Now suppose that there
comes a write request to update data chunk A to A′. We also
suppose that all data/parity chunks do not exist in memory.
RMW, as shown in Fig. 1(a), needs to read two chunks A and
P , and updates parity chunk P to P ′ with P ′ = A⊕A′⊕P . So

Å

A B C D P

A' P'

Stripe 0

Disk

(a) read-modify-write

Å

A B C D P

A' P'

Stripe 0

Disk

(b) read-construct-write

Fig. 1. Two parity update ways in RAID for updating chunk A.

RMW incurs two pre-reads, which access disks D0 and D4,
respectively. For RCW, as depicted in Fig. 1(b), it needs to read
three chunks B, C and D from disks into memory to update
parity chunk P to P ′ with P ′ = A′ ⊕B ⊕ C ⊕D. So RCW
incurs three pre-reads, which access disks D1, D2, and D3,
respectively. To minimize the total number of I/Os, traditional
parity update algorithm chooses RMW in this example as it
requires one fewer pre-reads when updating parity chunk P .

B. Skewness of I/O Queues

Note that the traditional parity update algorithm chooses
either RMW or RCW by considering only the number of
pre-reads required, so as to minimize the total number of
I/Os while updating parity chucks. However, it neglects the
skewness of I/O queues on different disks, and thus may
choose the one (RMW or RCW) which introduces pre-reads to
the disks with heavier I/O workloads. As a result, it aggravates
the skewness of I/O queues, and make the I/O workloads on
different disks more unbalanced.

R
a
ti
o
(%

)

0

10

20

30

40

50

60

70

fio
(1

)

fio
(0

.9
)

fio
(0

.8
)

fio
(0

.7
)

fio
(0

.6
)

fio
(0

.5
)

sr
c2

_2

pr
xy

_0

pr
oj
_4

pr
oj
_0

hm
_1

hm
_0

Fig. 2. The ratio of parity update requests that need to access the disk with
the maximal length of I/O queue when using the traditional algorithm.

To further illustrate the skewness problem of I/O queues,
we still take the RAID array shown in Fig. 1 as an example.
Suppose that the I/O workloads on disk D0 and D4 are
much heavier than those on disks D1, D2, D3. So RMW
will aggravate the skewness of I/O queues, and prolong the
system response time. Even though RCW needs one more pre-
reads than RMW, it accesses the disks with lighter I/Os, so
the update of P can be finished earlier.

To validate the existence of skewness of I/O queues while
updating parity chunks, we embed the traditional algorithm
on a server deployed a 7+1 RAID-5. We run four real-
world workloads on the system (see Table II in Section VI-A
for workload details). To further examine the skewness of
the I/O queues, we also conduct experiments with synthetic
workloads, which write 10GB data to RAID-5 in 4KB unit
issued by fio[1]. And the result is shown in Fig. 2. In Fig. 2,
in terms of real-world workloads, we see that ratio reaches to
38.7%-52.7% for the four write intensive traces, and reaches
to 41.9%-61.5% for the two read-intensive workloads. We also

find that almost 10.2%-33.8% of all skewness are greater than
0.25ms, and almost 10% cases are even greater than 0.5ms.
And for synthetic workloads, we find that ratio almost reaches
to 28.8%-35.3% with varying write ratio. This implies that
skewness does exist in real-world applications.

C. Motivation

Traditional parity update algorithm chooses either RMW
or RCW with fewer pre-reads so as to reduce total I/Os,
but it may aggravate the skewness of I/O workloads. On the
other hand, we can also choose the one from RMW and
RCW, which balances the I/O workloads on different disks,
but this may lead to more pre-reads and increase the total
workload to the RAID. So it is important to balance the trade-
off between the number of pre-reads and the skewness of
I/O queues. To analyze the tradeoff, we first characterize the
lengths of I/O queues on different disks, and then study the
impacts of I/O workloads and I/O queue skewness on system
performance. Finally, our goal is to design a new parity update
algorithm which selects RMW or RCW by considering both
I/O workloads and I/O queue skewness, so as to reduce the
overall response time of user requests and parity update.

IV. A BALANCED PARITY UPDATE ALGORITHM

In this section, we propose a balanced parity update algo-
rithm BPU, which takes the number of pre-reads, I/O skewness
and real-time workloads into consideration. We first present
some basic definitions related to pre-read, I/O skewness, and
real-time workload on a RAID, then explain how to combine
pre-read with skewness in BPU, and at last we present the
design of BPU.

A. I/O Queue Length

There are two types of I/O requests, read and write, in the
I/O queue of a disk. Because the access latencies of reading
a chunk and writing a chunk are different, we formulate the
queuing delay of an I/O queue as

L = NR ×AR +NW ×AW , (3)

where NR and NW denote the number of read requests and
the number of write requests in a queue, respectively, AR and
AW denote the access latencies of processing a read request
and a write request on a disk, respectively. Note that AR

and AW depend on storage mediums, and it is very difficult
to accurately predict the values of AR and AW . Note that
Equation (3) formulates the latency of individual disk. So it
is applicable to RAIDs with heterogeneous disks.

Suppose that there are n disks D0, D1, ..., Dn−1 in a RAID.
We define its I/O queue length as a vector

LRAID = (L0, L1, ..., Ln−1), (4)

where Li is the length of the I/O queue on disk Di.

B. Pre-read for Updating Parity Chunk

If some data chunks in a parity chain are updated, the
corresponding parity chunk should be updated to keep data
consistency and data availability. We can use either RMW or
RCW to update a parity chunk according to Equation (1) or
(2). To complete the updating, we should first perform pre-
read to read some data chunks and/or parity chunk from disks
into memory. We define NRrmw and NRrcw as the numbers of
pre-reads for updating a parity chunk with RMW and RCW,
respectively. After computing NRrmw and NRrcw , we can eas-
ily derive the difference of the numbers of pre-reads induced
by RMW and RCW, and we have ∆pre = |NRrmw −NRrcw |.

C. Tradeoff between Pre-read and Skewness

The basic idea of BPU is that we should pay more attention
to the number of pre-reads when the workload on a RAID is
heavy or the I/Os on all disks are evenly distributed or only
lightly skewed; Otherwise, we should focus on the skewness
of I/O queues.

We use the average length of I/O queues on all disks to
dynamically measure the online workload on a RAID, i.e.,
Lavg =

∑n−1
i=0 Li

n . To capture the workload status, we define
two thresholds, Theavy and Tlight, and classify workloads into
three states, Overloaded, Normal and Lightloaded according
to the following formula.

state =

 Overloaded, Lavg ≥ Theavy;
Normal, Theavy > Lavg ≥ Tlight;
Lightloaded, Tlight > Lavg.

(5)

To measure the skewness of I/O queues while updating par-
ity chunk, we define Lrmw

max = max{Li| Disk Di is accessed
to update a parity chunk with RMW }, Lrcw

max = max{Li| Disk
Di is accessed to update a parity chunk with RCW }. With
Lrmw
max and Lrcw

max, we define ∆l = |Lrmw
max − Lrcw

max|.
Lrmw
max is the maximum I/O queue length on the disks which

will be accessed when we use RMW to update a parity chunk.
Similarly, Lrcw

max is the maximum queue length when we use
RCW to update a parity chunk. So ∆l is the difference of
skewness when we update a parity chunk with RMW and
RCW, respectively. Intuitively, to update a parity chunk, we
should pay more attention to the number of pre-reads when ∆l

is small; Otherwise, we should pay more attention to skewness.
So we define a threshold Tskew to identify whether ∆l is small
or large. We also define a threshold Tpre to identify whether
∆pre is small or large. If ∆pre is large, we should select RMW
or RCW which incurs fewer pre-reads; Otherwise, we should
pay more attention to the skewness of I/O queues.

D. BPU: A Balanced Parity Update Algorithm

Now we are ready to present BPU for updating a parity
chunk. It bases on the following rules:

1) When the workload is Overloaded, we should reduce
the coming I/O loads rather than relieve skewness with
more I/O loads.

2) When the workload on a RAID is Normal, we should
take both of ∆pre and ∆l into consideration to make a
balance between I/O overhead and I/O skewness.

• When ∆l ≥ Tskew, which means that the difference
of skewness with RMW and RCW is large, we
should pay more attention to the skewness; other-
wise, we could ignore the skewness to focus on I/O
overhead, i.e, select one from RMW and RCW with
fewer pre-reads.

• When ∆pre > Tpre, which means that the one
from RMW and RCW with more pre-reads will add
considerable more load to a RAID. So we should
reduce pre-reads instead of relieving I/O skewness.

3) When the workload is Lightloaded, we could focus on
relieving I/O skewness even though with more I/O loads.

E. Time Complexity of BPU

Suppose that a RAID consists of n disks and is deployed
with an (n, r)-erasure code, i.e. there are r data chunks and
n− r parity chunks in a stripe. So the RAID tolerates n− r
disk failures. For practical settings, r > n − r, and usually
r ≥ 2(n− r). The most common used ones are RAID-5 and
RAID-6 with n− r = 1, or 2 respectively.

The traditional parity update algorithm checks the encoding
equation of a parity chunk, then counts NRrcw and NRrmw ,
and selects the smaller one. So it needs to go through the
encoding equation and checks which data/parity chunks are in
memory. It checks n chunks in memory. Apart from NRrcw

and NRrmw , BPU needs extra computation of Lrcw
max and

Lrmw
max , i.e., n queue lengths. Because all of NRrcw , NRrmw ,

Lrcw
max and Lrmw

max are counted in memory, the difference of time
complexities between BPU and traditional update algorithm is
negligible compared to the time to complete I/O requests.

F. Extra I/O Loads of BPU

The extra I/O load for updating a parity chunk With BPU
is reading 0 or ∆pre data/parity chunks, which is limited by
the threshold of Tpre. But in real systems, it also strongly
depends on application workloads. So it is hard to give a
theoretical analysis of extra I/O loads brought by BPU. For
the applications with light I/O loads but heavy skewness, we
should select large Tpre, but conversely for ones with heavy
I/O loads but light skewness, we should select small Tpre.

G. Summary

The basic idea of BPU is straightforward. But its perfor-
mance strongly depends on the selections of Tpre, Tskew,
Theavy , Tlight and real time workload on a RAID. In Section
VI, we will present some insights for the selections of these
parameters related to workloads with experiments.

V. SYSTEM DESIGN

To evaluate the performance of BPU, we modified Linux
kernel 4.0.2 and implemented a prototype system of RAID-
5 with BPU on a server with 9 SSDs. We implemented
traditional parity update algorithm and BPU on the prototype

system respectively and run some common used traces on it to
compare their performances. In this section, we first present
an overview of RAID architecture and a diagram of its I/O
flow, and then the detail implementation of BPU.

A. An Overview of RAID Architecture

A RAID typically consists of three components, RAID
controller, I/O queue on each disk and physical disk array,
as shown in right part of Fig. 3. RAID controller receives
read or write (abbr. R/W) requests from workloads, interprets
them according to the data layout in disk array and transfers
them to I/O queues. An I/O queue stores the requests which
are waiting for being scheduled by the I/O driver of each disk.
Disk array is a group of storage medium, such as HDD or SSD.
The HDDs or SSDs in a disk array may be heterogeneous.

...

Workloads

I/O Queue

...

Disk Array

Stripe Location Module

I/O Interface

RAID

Controller

Cache

Module

Interface

Queue

Monitor

Stripe

Analysis

Module

BPU Module

I/O Analysis Module

Fig. 3. The Overview of RAID Architecture with BPU.

B. RAID Controller

A RAID Controller typically consists of four components,
Stripe Location Module, I/O Analysis Module, Cache Module
and I/O Interface. Its workflow is mainly as follows.

Stripe Location Module analyzes the received requests to
get their target data chunks and stripes according to the data
layout in disk array, and then sends the stripes along with
target chunks to I/O Analysis Module.

I/O Analysis Module traverses a stripe and decides which
data/parity chunks should be read from or write into disk array.
If a parity chunk is to be updated, I/O Analysis Module selects
one from RMW and RCW with an algorithm. At last, it sends
R/W requests to I/O Interface.

Cache Module temporarily stores the data chunks accessed
by R/W requests and the parity chunks to be updated to keep
data consistency and data availability.

I/O Interface receives from I/O Analysis Module that which
data/parity chunks should be read from or write into a RAID.
It then adds the requests into the corresponding I/O queues of
disks, where the requests are waiting for being executed.

C. I/O Analysis Module with BPU

In our prototype system, we embed BPU in I/O Analysis
Module as an algorithm to select one from RMW and RCW
to update parity chunks. Apart from Stripe Analysis Module
in traditional I/O Analysis Module, BPU adds to it two
components, Queue Monitor and Interface. Interface is in
charge of setting some parameters, such as the thresholds in
BPU algorithm and the access latency of disks. To increase
flexibility of the module, our system supports modifying these
parameters dynamically through Interface. Queue Monitor
captures real-time information of I/O Queues, including the
numbers of read/write requests on all disks. The information
in Queue Monitor is consistent with the I/O queue all the time.

Stripe Analysis Module first traverses the stripe to find out
related information of each chunk to be accessed. For a request
to read a data chunk, the data chunk will be fetched directly
from memory if it resides in Cache Module; otherwise, Stripe
Analysis Module will send the read request to I/O Interface.
To write a data chunk, the data chunk and the parity chunk in
the same stripe should be updated simultaneously. So Stripe
Analysis Module will look up Cache Module to see which
chunks in the parity chain residing in memory and select RMW
or RCW to update the parity chunks. Once RMW or RCW is
selected, Stripe Analysis Module sends the requests to read
or write data/parity chunks to I/O Interface. We embed BPU
algorithm into Stripe Analysis Module to support balanced
parity update algorithm.

D. Implementations

We have implemented a RAID-5 with BPU based on the
software-raid [2] within Linux OS. To realize BPU, we make
the following modifications on the source code in md layer of
Linux kernel 4.0.2.

• We add two arrays, Read IO and Write IO, to record the
number of chunks to be read and written on each disk
of a RAID. Each array contains N elements, where N is
the number of disks in a RAID. Each element occupies 4
Bytes. We support atomic operation for these two arrays
to ensure data consistency.

• We also add four variables to record four thresholds
Theavy , Tlight, Tskew and Tpre in BPU algorithm. Each of
them occupies 4 Bytes. We can modify them dynamically
by Interface in BPU Module.

• We also add two arrays Read latency and Write latency
to record read latencies and write latencies of all disks of
a RAID. So we can compute the lengths of I/O queues
on all disks of a heterogeneous RAID. Each element of
two arrays occupies 4 Bytes, and it was initialized when
a RAID was configured.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments with our
prototype system via real-world workloads to compare the
performances of BPU and traditional parity update algorithm.
We also discuss about the parameter settings of Tlight, Theavy ,
Tpre, Tskew so as to optimize BPU’s performance. We first

introduce the system configuration and the workload traces
used in our experiments. Next, we show the performance
improvement of BPU with different parameters, compared
with traditional parity update algorithm. At last, we provide
several insights to set the thresholds used in BPU. By default,
we averaged over 3 runs for all our experiments unless we
state otherwise.

A. System Configuration and Workloads

We conduct our experiments on a DELLTM PowerEdge
T620 server with four 2.50GHz Intel Xeon(R) E5-2609 CPUs
and 8GB memory. The operating system is Ubuntu 15.04, 64-
bit, which is installed in a single SSD. We configure eight
SSDs as a 7+1 SSD RAID-5 by mdadm[10] command. Table I
shows the detailed specification of the SSDs.

TABLE I
SPECIFICATION OF SSDS

Specification SSD
Manufacture Intel

Model DC S3500 Series
Flash Memory MLC

Capacity 120GB
Form Factor 2.5-inch

Interface SATA 3.0 6Gb/s
SEQ. Read 445MB/S
SEQ. Write 135MB/s

We consider several real-world workloads[9] collected from
enterprise data center. Table II shows the detailed statistics
of these traces. These block-level traces are named as <
server volume >, which means that it is collected from
which server and which data volume, e.g. prxy 0 workload
is generated from volume 0 in Web proxy server. The traced
period was one week originally. We compress the period to
half one hour for intensive performance evaluation.

We design BPU to improve the performance of parity update
in RAIDs. So we select four traces(e.g. hm 0, proj 0, prxy 0
and src2 2) because they are write-intensive. We can find from
Table II that the minimal ratio of write request is 0.65, and the
maximal ratio reaches up to 0.97. Furthermore, we also select
two traces, hm 1 and proj 4, to evaluate its performance in
read-intensive environment.

B. Impacts of Parameters

In this subsection, we mainly discuss the impacts of d-
ifferent parameters to the BPU. According to the various
parameters configuration, we evaluate the performance of the
traditional parity update algorithm and BPU. Because there are
too many combinations for setting the parameters of Tlight,
Theavy , Tpre and Tskew, we first execute the six traces with
traditional parity update algorithm to get some basic statistics
about the number of pre-reads, average I/O queue length,
maximal I/O queue length. From these statistics, we can get
some reasonable settings of them in our experiments.

Tlight: We evaluate the performance of BPU with different
settings of Tlight. We fix Tpre = 3, Theavy = 4ms for every
heavy workload and Tskew = 50us for light skewness of I/O
queues. The settings of Theavy and Tskew in this subsection

Varying T
light

(ms)

0 0.2 0.4 0.6 0.8 1

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_1

BPU-proj_4

(a) read-intensive workloads

Varying T
light

(ms)

0 0.2 0.4 0.6 0.8 1

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_0

BPU-proj_0

BPU-prxy_0

BPU-src2_2

(b) write-intensive workloads

Fig. 4. The normalized average response time under varying Tlight.

are to make BPU have more chances to select RCW and
RMW with light I/O skewness. We set Tlight=0.025, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 to 1ms. Fig. 4 shows
the normalized average response time of requests when using
traditional parity update algorithm and BPU under varying
Tlight. Because the response time of traditional algorithm does
not depend on Tlight, we always set the normalized average
response time of which is 1.

As shown in Fig. 4(a), compared with traditional algorithm,
BPU reduces the average response time by 6% at most
for read-intensive workloads. With the increase of Tlight,
the response time becomes unstable. However, the range of
variation is still under 4%. Compared with performance for
the read-intensive workloads, BPU performs better for the
write-intensive applications. From Fig. 4(b), BPU improves the
performance by 6%-10% compared to traditional algorithm.
With varying Tlight, the tendency of response time of BPU
becomes flat for all write-intensive traces. Fig. 4(b) also
reveals that BPU performs better for the workloads that contain
heavier write requests.

Varying T
light

(ms)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 R
a
ti
o
(%

)

0

5

10

15

20

hm_0

hm_1

proj_0

proj_4

prxy_0

src2_2

Fig. 5. The ratio of extra pre-reads.

When Lavg < Tlight, we consider the workload on a RAID
as Lightloaded. In this case, BPU always selects RCW or
RMW with lighter I/O skewness regardless the number of pre-
reads required for parity update, which will certainly increase
the total I/Os on a RAID. But when the workload is Normal,
we will limit the increase of the number of pre-reads by Tpre

while choosing the one with lighter skewness, which makes
the extra workload on a RAID be limited. As Tlight increases,
the system is considered to be Lightloaded more often, which
makes the extra workload induced by pre-read be heavier.
Fig. 5 shows the ratio of extra pre-reads with different settings
of Tlight when we choose RMW or RCW with lighter I/O
skewness. The extra pre-reads ratio increases slowly when
Tlight increases from 25us to 1ms. There are about a 10%

TABLE II
STATISTIC OF REAL-WORLD WORKLOADS

Workloads Function Total request numbers Write ratio Total I/O size Average I/O size The largest request size
hm 0 H/w monitor 3993316 0.65 30.44GB 8KB 0.72MB
hm 1 H/w monitor 609311 0.05 8.81GB 15KB 0.5MB
proj 0 Project dirs 4224524 0.88 153.24GB 38KB 0.7MB
proj 4 Project dirs 6465639 0.02 144.64GB 24KB 0.06MB
prxy 0 Web proxy 12518968 0.97 56.84GB 4KB 1MB
src2 2 Source control 1156885 0.69 62.07GB 56KB 0.13MB

Varying T
heavy

(ms)

1 2 3 4

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_1

BPU-proj_4

(a) read-intensive workloads

Varying T
heavy

(ms)

1 2 3 4

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_0

BPU-proj_0

BPU-prxy_0

BPU-src2_2

(b) write-intensive workloads

Fig. 6. The normalized average response time under varying Theavy .

ratio increase for all traces. But there are almost more 40%
ratio that BPU selects RMW or RCW with lighter skewness.
The gain of relieving skewness can well remedy the impact of
extra pre-reads overhead. Hence, this is why BPU outperforms
traditional algorithm a little as Tlight increases.

From Fig. 4, we find that BPU almost performs best by
setting Tlight = 0.1ms. So in the following experiments, we
always set Tlight = 0.1ms and evaluate the performance of
BPU with different settings of other parameters.

Theavy: Now we present the performance of BPU with
different settings of Theavy . We fix Tlight=100us, Tskew=50us
and Tpre=3 as the same in last subsection. We vary Theavy

from 0.5, 0.6,,0.7, 0.8, 0.9, 1, 2, 3, 4 to 5 ms. Fig. 6 shows
the performance comparison.

From Fig. 6(a), we find that the performance of BPU im-
proves 10% than traditional algorithm for read-intensive work-
loads at most. However, the response time performs chaotic
with different settings of Theavy . As shown in Fig. 6(b),
for write-intensive workloads, BPU improves the performance
by 6%-10% compared to traditional algorithm. For example,
compared the performance for hm 0 and proj 0, we find that
BPU improves almost 8.2%-10% for proj 0 and 6%-7.3%
for hm 0. Hence, we believe that BPU performs better for
heavier write-intensive workloads. For BPU algorithm, the

Varying T
heavy

(ms)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
a
ti
o
(%

)

0

15

30

45

60

75

90

Overloaded

Normal

Lightloaded

Fig. 7. The ratio of the state on RAID.

larger Theavy is, the workload is considered to be Normal

Varying T
pre

(ms)

1 2 3 4 5 6

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_1

BPU-proj_4

(a) read-intensive workloads

Varying T
pre

(ms)

1 2 3 4 5 6

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_0

BPU-proj_0

BPU-prxy_0

BPU-src2_2

(b) write-intensive workloads

Fig. 8. The normalized average response time under varying Tpre.

with higher chance. In terms of hm 0 workload, Fig.7 shows
that the ratio of the RAID being Overloaded decreases from
57.5% to 1.8% when Theavy increases from 0.5ms to 3ms.
After that, the ratio keeps almost unchanged. With the increase
of Theavy from 0.5ms to 5ms, the ratio of a RAID being
Normal increases. Due to the period variations, we find that
about 21.5% of the parity updates are performed by one of
RMW or RCW with lighter skewness when Theavy = 0.5ms.
And the ratio reaches 37.8% when Theavy = 5ms. But BPU
may generate more pre-reads when it selects the one of RMW
or RCW with lighter skewness. According to the semantic
analysis, however, the ratio of extra pre-reads increases a
little(almost 1%-3%) when Theavy increases. This is because
other thresholds restrict the overhead increment of extra pre-
reads even with higher probability that BPU selects the one
of RMW or RCW with lighter skewness.
Tpre: In this subsection, we study the impact of Tpre on the

performance of BPU. We fix Tlight = 100us, and Tskew=50us.
We set Theavy = 500us for read-intensive workloads and
Theavy = 1ms for write-intensive applications respectively.
We vary Tpre from 1, 2, 3, 4, 5 to 6. Fig. 8 shows the average
response time to updating parity chunk.

As shown in Fig. 8(a), BPU improves the performance
by 7.6% at most for read-intensive workloads. When Tpre

increases form 1 to 6, the response time presents a gently fluc-
tuation. From Fig. 8(b), BPU shows a better improvement for
write-intensive applications than read-intensive traces, which
shortens the response time by 9.9% at most. We take proj 0 as
an example, the average response time of traditional algorithm
is 13.8ms. With Tpre increases, the response time is about
12.6ms and shows a mild tendency. We observe similar trend
for other workloads.

With Tpre increases, BPU has more chance to choose
RMW or RCW with lighter skewness. In the case of proj 0
workload, there are more 20% ratio of the parity updates are
performed by one of RMW or RCW with lighter skewness.

Varying T
skew

(ms)

0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_1

BPU-proj_4

(a) read-intensive workloads

Varying T
skew

(ms)

0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 r

e
s
p

o
n

s
e

 t
im

e

0.7

0.8

0.9

1

1.1

Tradition

BPU-hm_0

BPU-proj_0

BPU-prxy_0

BPU-src2_2

(b) write-intensive workloads

Fig. 9. The normalized average response time under varying Tskew .

But BPU generates a little(almost 2.5%-6.4%) extra pre-
reads than traditional algorithm. Hence, the extra overheads
has a slight impact on the performance. And BPU improves
the performance than traditional algorithm within a gently
fluctuation as Tpre increases.

Tskew: We now evaluate the impact of Tskew on the
performance of BPU. We fix Tlight = 100us, and Tpre = 3.
We set Theavy = 500us for read-intensive workloads and
Theavy = 1000us for write-intensive applications respectively.
We vary Tskew from 0.05, 0.25, 0.5, 0.75 to 1ms. The
performance comparison is shown in Fig. 9.

BPU consistently outperforms traditional algorithm under
all settings of Tskew. The improvement reaches 5.4%-7.6%,
4%-8.5%, 8.3%-9.8%, 3.1%-6.3%, 7.7%-8.5% and 6.5%-
7.7% for hm 0, hm 1, proj 0, proj 4, prxy 0 and src2 2,
respectively. When Tskew increases from 0.05 to 1ms, the
response time presents a flat outlook for all traces. When
Tskew increases, BPU selects the one from RCW or RMW
with lighter skewness only when skewness becomes heavier.
As a result, the gain of response time reduction comes from
the balancing of I/O queues can well compensate the loss of
performance caused by more pre-reads. We believe that this is
the reason why BPU performs a little better as Tskew increases.

C. Summary

Based on our experiments, we show that BPU outperforms
traditional parity update algorithm. With more refinements of
thresholds, BPU shows a stable performance improvement.
Based on our experiments, we learn the following insights
to regulate the settings of Tlight, Theavy, Tpre and Tskew.

1) Tlight should be set to be small and Theavy should be set
to be large. So BPU has a higher probability to balance
the pre-reads and skewness.

2) Tpre usually is configured as the half of the disk number
in a RAID. Hence, BPU has more chance to make the
tradeoff of pre-reads and skewness.

3) Tskew should be set to be a little larger than the average
skewness. So the benefit from lightning the skewness can
well compensate the extra pre-reads induced by BPU.

VII. CONCLUSION

In this paper, we proposed a balanced parity update algo-
rithm, BPU, which takes pre-reads, I/O skewness and real-
time workload on a RAID into consideration. To validate
the efficiency of BPU compared to traditional parity update

algorithm, we modified Linux kernel 4.0.2 and embedded BPU
into the kernel to realize a RAID-5 system with 7+1 SSDs.
Our experiments showed that the skewness of I/O queues does
exist when we update parity chunks by using the traditional
parity update algorithm, which prolongs the response time
to parity update. We also conducted extensive experiments
to optimize the performance of BPU by adjusting some
basic thresholds. Experimental results showed that BPU could
reduce the average response time by up to 10% compared with
traditional parity update algorithm.

ACKNOWLEDGEMENTS

This work was supported by National Nature Science Foun-
dation of China under Grant No. 61379038 and No. 61303048
and Huawei Innovation Research Program under Grant No.
HIRPO20140301.

REFERENCES
[1] fio. http://freecode.com/projects/fio.
[2] Software RAID. https://en.wikipedia.org/wiki/RAID#Software-based.
[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,

and R. Panigrahy. Design Tradeoffs for SSD Performance. In USENIX
Annual Technical Conference, pages 57–70, 2008.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures.
IEEE Transactions on Computers,, 44(2):192–202, 1995.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based Solid
State Drives. In ACM SIGMETRICS Performance Evaluation Review,
volume 37, pages 181–192. ACM, 2009.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-Performance, Reliable Secondary Storage. ACM
Computing Surveys (CSUR), 26(2):145–185, 1994.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar. Row-Diagonal Parity for Double Disk Failure Correction.
In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies, pages 1–14, 2004.

[8] J. L. Hafner. WEAVER Codes: Highly Fault Tolerant Erasure Codes for
Storage Systems. In FAST, volume 5, pages 16–16, 2005.

[9] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-Loading:
Practical Power Management for Enterprise Storage. ACM Transactions
on Storage (TOS), 4(3):10, 2008.

[10] J. Østergaard and E. Bueso. The Software-RAID HOWTO. Acessado
em 04/04/2003, disponı́vel, 2000.

[11] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID), volume 17. ACM, 1988.

[12] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in a Large
Disk Drive Population. In FAST, volume 7, pages 17–23, 2007.

[13] J. S. Plank, M. Blaum, and J. L. Hafner. SD Codes: Erasure Codes
Designed for How Storage Systems Really Fail. In FAST, pages 95–
104, 2013.

[14] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications. In Fifth IEEE Internation-
al Symposium on Network Computing and Applications, pages 173–180.
IEEE, 2006.

[15] B. Schroeder and G. A. Gibson. Disk failures in the real world: What
does an MTTF of 1, 000, 000 hours mean to you? In FAST, volume 7,
pages 1–16, 2007.

[16] M. Sevilla, R. Wacha, and S. A. Brandt. RAID4S-modthresh: Mod-
ifying the Write Selection Algorithm to Classify Medium-Writes as
Small-Writes. Technical report, Technical Report UCSC-SOE-12-10,
University of California, Santa Cruz, 2012.

[17] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding vs. Replication:
A Quantitative Comparison. In Peer-to-Peer Systems, pages 328–337.
Springer, 2002.

[18] L. Xu and J. Bruck. X-Code: MDS Array Codes with Optimal Encoding.
IEEE Transactions on Information Theory, 45(1):272–276, 1999.

