
Scaling Distributed File Systems via Correlation-based Metadata
Prefetching

Youxu Chen(student), Yinlong Xu(co-advisor) and Cheng Li(co-advisor)

University of Science and Technology of China

1 Problem and Motivations
Distributed file systems (DFS) such as GFS[5],
HDFS[14], Ceph[16] have become key data storage
components to building scalable Internet services. The
typical DFS architecture consists of three components,
namely, metadata servers(MDS), object-based storage
devices(OSD) and clients. Clients first send metadata
requests directly to MDS and later on contact OSD for
accessing raw data. The interaction with MDS may in-
volve a sequence of operations to perform a lookup to
locate the path info, obtain the metadata info (i.e., direc-
tory entry and inode) and require a lease to be able to
manipulate the target file. A survey highlights that the
number of IOs to MDS is significant and accounts for
50% in the overall IOs to the whole DFS [12]. As a re-
sult, the performance of the metadata server is crucial to
scale DFS[17, 10, 18, 3, 15, 11, 1, 2, 13].

In web services, loading one web page may lead to
loading multiple scripts and images, as that page contain-
s various links referring to those required resources. For
instance, we analyse the access log [19] of web servers
and find out that 23% requests are correlated. The meta-
data server design does not respect the existences of cor-
relations, and thus resulting in performance degradation-
s: (a) too much traffic that could be grouped together
flows to metadata server in a separating manner and may
overwhelm it; (b) the sequential access also prolongs the
page loading time, which is the primary concern of ser-
vice providers. It is worth noting that these correlated
access patterns also appear in scenarios other than web
services, such as code browsing, scientific computations
and so forth.

To keep MDS away from being the bottleneck, in
this paper, we propose a correlations-based metadata
prefetching to significantly reduce IO traffic to MDS and
consequently to scale distributed file systems. To achieve
this, we must overcome the following challenges:(1) ex-
tracting correlations with low false negatives where a
correlation we predict never exists; (2) fast adapting to
real time changes of correlations as the system is run-
ning; (3) efficiently prefetching correlated files.

2 Background and Related Work
Some previous works focus on exploiting correlated ac-
cess patterns to scale storage systems. For instance, C-

Miner[9] explores block correlations, and DiskSeen[4]
analyzes temporal and spatial relationships of disk ac-
cess. Unlike them, we instead target file correlations,
which contain richer semantic. To find file correlation-
s, Kroeger et al.[8] introduces an extended partitioned
context modeling to explore correlations by building an
access pattern trie. Gu et al.[6] proposes a weighted-
graph-based grouping method to predict and prefetch the
future access sequence. Hua et al.[7] organizes files in-
to semantic-related groups and designs a semantic-aware
caching method to offer low latency queries.

Most of them are built on a hypothesis that if two files
were frequent accessed closely in the past, they will be
accessed together with high probability in the future. Un-
fortunately, all of these approaches discard a type of cor-
relations — data correlation, which are important and are
taken into account by us. Besides, almost every piece of
the above works runs the correlation extraction offline,
and thus resulting in inaccuracies as correlations will be
evolving. To address these problems, we plan to integrate
online and offline methods to adapt to real-time changes.

3 Our Approach and Novelty
3.1 Defining Correlations
Informally, we say that file A and file B are correlated if
A refers to B or they are accessed closely. This definition
breaks correlations into two categories, namely data cor-
relation and access correlation. We propose to associate
the metadata of each file with a list of key value pairs
where key is the unique inode number of one of its cor-
related files, and value consists of two double numbers,
namely VD and VA, where the former and latter repre-
sents the likelihood of having data correlation or being
accessed together. The VD or VA larger, the correspond-
ing correlation stronger.

3.2 Extracting and Updating Correlations
The major challenges of exploring data correlations to s-
cale distributed file systems is to detect these correlation-
s and adapt them to dynamic file changes. To fulfill the
goal of not impacting the performance of normal meta-
data IOs, we propose a hybrid solution, which can extract
and update correlations when adding new files, removing
existing files and changing file content, and additionally
support deferred processing of such tasks.



d

c

b

e a

Figure 1: Lazy update for obsolete correlations when
deleting files.

Online There are two major cases in which we have to
extract or update correlations, namely, files got changed,
and frequencies of co-accessing evolves.
(1) Content changes When clients update files data,
we trigger a semantic analysis procedure which up-
dates data correlations at runtime according to the con-
tent changes. To do so, we face the following challenges:

Challenge 1 The semantic analysis procedure has to
handle the diverse application-specific data files. For ex-
ample, scripts, images or other files are referred by web
files using href or src. Source code files refer to the
required header files by include or import. We plan
to generalize this and make the procedure understand the
formats of various applications.

Challenge 2 When a file is blindly overwritten, it is
easy to find correlations pointed by new data, but an ad-
ditional read to the old data is needed to remove the cor-
responding old correlations. To avoid this, we introduce
a lazy update method, where we first mark which part-
s of the file were overwritten and rebuild correlations in
background to keep them consistent w.r.t data changes
when a subsequent read arrives.

Challenge 3 When a file is deleted, the correlations
pointing to it become obsolete and should be removed.
As Fig. 1 depicts, file a is deleted, and the metadata of
the other four files must evict correlations to a. How-
ever, this task needs to perform a comprehensive search
in MDS to figure out which files correlate with a, as the
correlation relation is not symmetric. To reduce the over-
head, we defer this update and remove obsolete corre-
lations when MDS tells that the correlated files do not
exist.
(2) Access pattern evolves To react to online changes
in access patterns, we adopt a sliding window method to
compute real time frequencies of file access correlations
and update the access value field (Section 3.1) accord-
ingly. To obtain frequencies, we keep track of a set of se-
quences of file access, where each sequence is connected
to a client. The window with a given fixed size starts at
the beginning of every sequence and slides towards the
tail one element per time. The files in that window are
considered correlated and recorded as ordered pairs as
< f ileA, f ileB >. We aggregate the number of occur-
rences of each ordered pair.
Offline To avoid introducing significant overhead at run-
time, we also propose a offline method to exploring cor-

Number of prefetched correlations

1 5 10 15 20

N
o

rm
a

liz
e

d
 n

u
m

b
e

r 
o

f 
M

D
S

 I
O

0

0.2

0.4

0.6

0.8

1

Figure 2: Normalized IO traffic to MDS vs. number of
prefetched correlations

relations among files when the system is idle or under
loaded. We record the access patterns for every client
and find the correlations by analyzing access traces. The
correlations will be then propagated to the metadata serv-
er in a light-weight manner.

3.3 Prefetching Metadata
When correlations are in place, prefetching is straight-
forward to obtain the metadata of most correlated files
whose values are sorted. In addition, we make two opti-
mizations. First, in order to reduce the traffic from MDS
to client and increase the client cache hit rate, we put an
upper bound on the number of correlated items that can
be fetched at a time. Second, to reduce the lookup and
permission check overhead, we also batch the requests to
obtain the ancestors information (directory and inode) of
a given file when executing prefetching.

3.4 Implementation and Evaluation
We have built a prototype system based on Ceph, which
demonstrates all key ideas presented above. We expect
that our design will reduce IO traffic to MDS with mod-
erate memory footprint, improves the client cache hit
ratio, and makes the enhanced Ceph more scalable via
correlations-based metadata prefetching.

Microbenchmark results We focus our attention on
the reduction in metadata IOs in the preliminary exper-
iments. We created a microbenchmark which contains
100000 files in a single directory, each of which has a
random number of correlations w.r.t other files. In each
experiment, we varied the number of prefetched correla-
tions upon each request sent to MDS. Fig. 2 summarizes
the comparison between the original Ceph and our en-
hanced version. Compared with Ceph, our correlation
prefetching scheme could reduce up to 40% IO traffic
to MDS when prefetching 20 correlations per time. This
improvement can be explained by the fact that prefetched
metadata resided in the clients’ cache and a significant
amount of subsequent accesses were likely served from
the cache. This result is also supported by an increase of
10% in the cache hit ratio at the client side.



References
[1] C. L. Abad, H. Luu, N. Roberts, K. Lee, Y. Lu, and R. H. Camp-

bell. Metadata Traces and Workload Models for Evaluating Big
Storage Systems. In Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, pages
125–132. IEEE Computer Society, 2012.

[2] S. R. Alam, H. N. El-harake, K. Howard, N. Stringfellow, and
F. Verzelloni. Parallel i/o and the metadata wall. In In Proceed-
ings of the 6th Parallel Data Storage Workshop (PDSW11). Cite-
seer, 2011.

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al. Find-
ing a Needle in Haystack: Facebook’s Photo Storage. In OSDI,
volume 10, pages 1–8, 2010.

[4] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. DiskSeen:
Exploiting Disk Layout and Access History to Enhance I/O
Prefetch. In USENIX Annual Technical Conference, volume 7,
pages 261–274, 2007.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In ACM SIGOPS operating systems review, volume 37,
pages 29–43. ACM, 2003.

[6] P. Gu, J. Wang, Y. Zhu, H. Jiang, and P. Shang. A Nov-
el Weighted-Graph-Based Grouping Algorithm for Metadata
Prefetching. IEEE Transactions on Computers, 59(1):1–15,
2010.

[7] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian. SmartStore: A
New Metadata Organization Paradigm with Semantic-Awareness
for Next-Generation File Systems. In Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and
Analysis, page 10. ACM, 2009.

[8] T. M. Kroeger and D. D. Long. Design and Implementation of a
Predictive File Prefetching Algorithm. In USENIX Annual Tech-
nical Conference, General Track, pages 105–118, 2001.

[9] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner: Mining
Block Correlations in Storage Systems. In FAST, volume 4, pages
173–186, 2004.

[10] S. Patil and G. A. Gibson. Scale and Concurrency of GIGA+: File
System Directories with Millions of Files. In FAST, volume 11,
pages 13–13, 2011.

[11] K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs: Scaling
File System Metadata Performance with Stateless Caching and
Bulk Insertion. In SC14: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages
237–248. IEEE, 2014.

[12] D. S. Roselli, J. R. Lorch, T. E. Anderson, et al. A Comparison
of File System Workloads. In USENIX Annual Technical Confer-
ence, general track, pages 41–54, 2000.

[13] M. A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. A. Brandt,
S. A. Weil, G. Farnum, and S. Fineberg. Mantle: a Programmable
Metadata Load Balancer for the Ceph File System. In Proceed-
ings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, page 21. ACM, 2015.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In 2010 IEEE 26th symposium on Mass
Storage Systems and Technologies (MSST), pages 1–10. IEEE,
2010.

[15] S. Sinnamohideen, R. R. Sambasivan, J. Hendricks, L. Liu, and
G. R. Ganger. A Transparently-Scalable Metadata Service for
the Ursa Minor Storage System. In USENIX Annual Technical
Conference, 2010.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A Scalable, High-Performance Distributed

File System. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, pages 307–320. USENIX
Association, 2006.

[17] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic
Metadata Management for Petabyte-Scale File Systems. In Pro-
ceedings of the 2004 ACM/IEEE Conference on Supercomputing,
page 4. IEEE Computer Society, 2004.

[18] J. Xing, J. Xiong, N. Sun, and J. Ma. Adaptive and Scalable
Metadata Management to Support a Trillion Files. In Proceedings
of the Conference on High Performance Computing Networking,
Storage and Analysis, page 26. ACM, 2009.

[19] S. Zhang, H. Catanese, and A.-I. A. Wang. The Composite-file
File System: Decoupling the One-to-One Mapping of Files and
Metadata for Better Performance. In FAST, pages 15–22, 2016.


